Math 241, Exam 2, Fall, 2017 11:40 class

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

The solutions will be posted later today.
The exams will be returned on Thrusday.
No Calculators, Cell phones, computers, notes, etc.
(1) Express $\vec{v}=4 \vec{i}+\vec{j}$ as the sum of a vector parallel to $\vec{b}=-2 \vec{i}+3 \vec{j}$ plus a vector perpendicular to \vec{b}. Check your answer. Make sure it is correct.
(2) Find the point on the line

$$
x=2+3 t, \quad y=3-t, \quad z=1+2 t
$$

which is nearest to the orign.
(3) Graph and describe the set of points in 3 -space which satisfy both of the equations

$$
z=4 \quad \text { and } \quad(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=16 .
$$

(4) Let $f(x, y)=3 x^{2} \sin (3 y)+7 y \cos (2 x)$. Find $\frac{\partial f}{\partial x}$.
(5) An object is fired from the origin in the $x y$-plane at an angle α from the positive x-axis with an initial speed of v_{0}. The acceleration of the object is $-g \vec{j}$. How high is the object when its x-coordinate is R ?

