Math 241, Exam 1, Spring, 2020

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

The solutions will be posted later today.
The exams will be returned on Monday.
No Calculators, Cell phones, computers, notes, etc.
(1) Find a system of parametric equations for the line through the points $P_{1}=(7,4,-2)$ and $P_{2}=(1,-4,1)$. Check your answer. Make sure it is correct.
(2) Find an equation for the plane through the points $P_{1}=(2,3,4)$, $P_{2}=(3,4,5)$, and $P_{3}=(1,6,8)$. Check your answer. Make sure it is correct.
(3) Express $\overrightarrow{\boldsymbol{v}}=1 \vec{i}-2 \vec{j}$ as the sum of a vector parallel to $\overrightarrow{\boldsymbol{b}}=3 \vec{i}+4 \vec{j}$ and a vector orthogonal to \vec{b}. Check your answer. Make sure it is correct.
(4) Parameterize the intersection of the two planes

$$
2 x+5 y+2 z=3 \quad \text { and } \quad 1 x+y+2 z=2 .
$$

Check your answer. Make sure it is correct.
(5) Describe, name, and draw the set of all points in 3-space that satisfy both of the equations $x^{2}+y^{2}+z^{2}=25$ and $z=4$.

