Math 174 Fall 2003 Final Exam.

PRINT Your Name: __________________________

There are 25 problems on 7 pages. Each problem is worth 4 points. The exam is worth 100 points. \[\text{CIRCLE} \] your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.

If I know your e-mail address, I will e-mail your course grade to you. If I don’t already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website later today.

You may leave the binomial coefficient \(\binom{n}{r} \) in any of your answers.

1. Consider the relation \(\leq \) on the set of real numbers. Is this relation reflexive, symmetric, transitive? Explain.

2. If \(a \) and \(b \) are integers, then \(a \equiv b \pmod{5} \) if and only if \(5 | (a - b) \). Describe the equivalence classes that correspond to this equivalence relation.

3. Suppose \(n \equiv 1 \pmod{5} \). Give a formula for \(\lfloor \frac{n}{5} \rfloor \) which does not involve \(\lfloor \rfloor \).

4. Solve the recurrence relation \(a_0 = 1000, \ a_n = (1.05)a_{n-1} + 100 \) for \(1 \leq n \).

5. Consider the Tower of Hanoi problem. There are three towers in a row: tower A, tower B, and tower C. There are \(n \) disks of different sizes stacked on tower A. One must move all \(n \) disks to tower C. One may NEVER place a bigger disk on top of a smaller disk. In the present problem, one may move a disk only to an ADJACENT tower. Let \(a_n \) be the minimum number of moves needed to transfer a stack of \(n \) disks from tower A to tower C. Find \(a_1, a_2, a_3 \). Find a recurrence relation for \(a_1, a_2, a_3, \ldots \).

6. Does there exist a one-to-one and onto function from \(\mathbb{N} \) to \(\mathbb{N} \times \mathbb{N} \), where \(\mathbb{N} \) is the set of positive integers? Explain.

7. Let \(r, m, \) and \(n \) be integers with \(0 \leq r \leq m, n \). Simplify \(\binom{n}{0} \binom{m}{r} + \binom{n}{1} \binom{m}{r-1} + \binom{n}{2} \binom{m}{r-2} + \cdots + \binom{n}{r-1} \binom{m}{1} + \binom{n}{r} \binom{m}{0} \). (Your answer should not have any \(\ldots \) or any summation signs.)

8. Let \(n \) be a positive integer. Simplify \(\sum_{k=0}^{n} 2^k \binom{n}{k} \). (Your answer should not have any \(\ldots \) or any summation signs.)

9. How many four tuples \((i, j, k, \ell) \) are there with \(3 \leq i \leq j \leq k \leq \ell \leq 10 \).

10. How many bit strings of length 8 contain exactly three 1’s? (A bit string is a string of 0’s and 1’s.)
11. How many integers between 1 and 1000 are relatively prime to 28?

12. A group of eight people attend a movie together. John and Mary are part of the group and they refuse to sit next to one another. How many ways may the eight people be arranged in a row?

13. If the largest of 87 consecutive integers is 326, what is the smallest?

14. Let \(A = \{t, u, v, w\} \) and let \(S_1 \) be the set of all subsets of \(A \) that do not contain \(w \) and \(S_2 \) the set of all subsets of \(A \) that do contain \(w \).
 (a) Find \(S_1 \).
 (b) Find \(S_2 \).

15. Let \(A = \{1, 2, 3\} \) and \(B = \{4, 5\} \). List the elements of \(A \times B \).

16. If \(A \), \(B \), and \(C \) are sets, is \(A \cup (B \cap C) = (A \cup B) \cap C \)? Prove or give a counterexample.

17. Prove \(\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \).

18. Consider the infinite sequence \(a_1 = \frac{1}{4} \), \(a_2 = \frac{2}{9} \), \(a_3 = \frac{3}{16} \), \(a_4 = \frac{4}{25} \), \(a_5 = \frac{5}{36} \), \(a_6 = \frac{6}{49} \), \(\ldots \). What is a formula for \(a_n \)?

19. Prove that there are infinitely many prime integers.

20. True or False. The sum of two irrational numbers is irrational. Give a proof or a counterexample.

21. Prove that the square of any integer has the form \(3k \) or \(3k+1 \) for some integer \(k \).

22. True or False. If \(a \), \(b \), and \(c \) are integers with \(a \mid bc \), then \(a \mid b \) or \(a \mid c \). Give a proof or a counterexample.

23. Write the repeating decimal \(6.2\overline{34} \) as the ratio of two integers.

24. Write “Being divisible by 6 is a sufficient condition for being divisible by 3.” in if-then form.

25. Prove that \(p \rightarrow q \) is logically equivalent to the contrapositive of \(p \rightarrow q \).