Math 174, Exam 4, Fall 2003, Solutions
PRINT Your Name: \qquad
There are 10 problems on 4 pages. Each problem is worth 5 points. The exam is worth 50 points.

CIRCLE your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office door later today, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 12:30 today.
You may leave the binomial coefficient $\binom{n}{r}$ in any of your answers.

1. Flip a coin ten times, what is the probabilty that the coin lands "Heads" exactly three times.
The sample space (all words of length 10 made out of " H " and " T ") has size 2^{10}. The number of words which consist of 3 " H " and 7 " T " is $\binom{10}{3}$. The answer is $\frac{\binom{10}{3}}{2^{10}}$.
2. How many license plates are possible if every license plate consists of three letters followed by three numerical digits and no letter or digit is repeated.
$26 \cdot 25 \cdot 24 \cdot 10 \cdot 9 \cdot 8$.
3. How many solutions does the equation $y_{1}+y_{2}+y_{3}+y_{4}=32$ have, if every y_{i} is an integer at least 5 ?
We solve instead $y_{1}^{\prime}+y_{2}^{\prime}+y_{3}^{\prime}+y_{4}^{\prime}=12$ where each y_{i}^{\prime} is a nonnegative integer and $y_{i}=y_{i}^{\prime}+5$. We picture four bins (labeled $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$, and y_{4}^{\prime}) in a row. We have 12 rocks to distribute among the four bins. Each such distribution gives rise to a solution to the original problem. We count the number of work orders consisting of 12 drops and 3 switches to count the number of distributions. The answer is $\binom{15}{3}$.
4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions and $g \circ f: X \rightarrow Z$ is one-to-one, must f and g both be one-to-one? Prove or give a counterexample.
The function g does not have to be one-to-one. Consider $X=Z=\{1\}$, $Y=\{1,2\}, f(1)=1$, and $g(1)=g(2)=1$. We see that $g \circ f: X \rightarrow Z$ is one-to-one, but $g(1)=g(2)$ with $1 \neq 2$, so g is not one-to-one.
5. Find the coefficient of x^{7} in $(2 x+3)^{10}$.

The term x^{7} occurs in $\binom{10}{7}(2 x)^{7} 3^{3}$. The coefficient of x^{7} is $\binom{10}{7} 2^{7} 3^{3}$.
6. Given an example of a function from \mathbb{Z} to \mathbb{Z} which is onto, but which is not one-to-one.
Consider $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is given by

$$
f(n)= \begin{cases}n & \text { if } n \leq 0 \\ n-1 & \text { if } 1 \leq n\end{cases}
$$

We see that $f(1)=f(0)=0$, so f is not one-to-one. On the other hand, it is clear that f is onto.
7. Simplify $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n}$. (Your answer should not have any \ldots or any summation signs.)
This expression is equal to 2^{n}. There are two ways to think of the problem. One could apply the binomial theorem

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n} 1^{k} 1^{n-k}\binom{n}{k}=\sum_{k=0}^{n}\binom{n}{k} .
$$

Or one could count the number of subsets in a set of size n. There are 2^{n} such subsets. Also, there are $\binom{n}{0}$ subsets of size $0 ;\binom{n}{1}$ subsets of size $1 ;\binom{n}{2}$ subsets of size $2 ; \ldots ;\binom{n}{n}$ subsets of size n.
8. Solve the recurrence relation $a_{0}=3$ and $a_{k}=a_{k-1}+k$ for $1 \leq k$.
$a_{1}=3+1, a_{2}=3+1+2, a_{3}=3+1+2+3$. Soon, we recoginize the pattern, $a_{n}=3+(1+2+\cdots+n)$. So, $a_{n}=3+\frac{n(n+1)}{2}$. We can check this answer. When $n=0$ my formula gives 3 . Also, if we assume by induction, that $a_{n}=3+\frac{n(n+1)}{2}$, then

$$
\begin{aligned}
a_{n+1}=a_{n}+(n+1)=3+ & \frac{n(n+1)}{2}+(n+1)=3+\frac{n(n+1)+2(n+1)}{2} \\
& =3+\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

as desired.
9. A person makes an initial deposit of $\$ 1,000$ to a bank account earning interest at a rate of 6% per year compounded monthly (so the interest earned each month is $\frac{.06}{12}=.005$), and each month she adds an additional $\$ 100$ to the account. For each nonnegative integer n, let A_{n} be the amount in the account at the end of n months. Find a recurrence relation relating A_{n} to A_{n-1}.

$$
A_{n}=1.005 A_{n-1}+100
$$

10. A single pair of rabbits (male and female) is born at the beginning of a year. Assume:
(1) Rabbit pairs are not fertile during the first month of life, but there after give birth to four new male/female pairs at the end of every month;
(2) No rabbits die.

Let r_{n} equal the number of pairs of rabbits alive at the end of month n. Start with $r_{0}=1$. Find r_{1}, r_{2} and r_{3}. Find a recurrence relation relating r_{n} to earlier r_{k} 's.

$$
r_{1}=1, \quad r_{2}=1+4=5, \quad r_{3}=5+4=9, \quad r_{n}=r_{n-1}+4 r_{n-2} .
$$

