3. A computer programming team has 14 members: 8 of the members are women and 6 of the members are men. How many ways can a group of 7 be chosen to work on a project if at most 3 women are in the group?

\[
\binom{6}{1} (\binom{8}{1} + \binom{6}{2} + \binom{4}{3})
\]

\[\uparrow\]
6 Men, 1 Woman

\[\uparrow\]
5 Men, 2 Women

\[\uparrow\]
4 Men, 3 Women

4. Find the sum \(2 + 2^2 + 2^3 + 2^4 + 2^5 + \cdots + 2^{26}\). (Your answer should not contain any dots or any summation signs.)

\[
\text{Sum} = 2 \left(\frac{1 - 2^{27}}{1 - 2} \right)
\]