1. True or False. If true, prove it. If false, then give a counterexample. A necessary condition for an integer to be divisible by 6 is that it be divisible by 2.

\((P \text{ is a necessary condition for } q) \equiv (q \rightarrow p) \)

For this problem, \(P = \) the integer is divisible by 2
\(q = \) the integer is divisible by 6

So the problem asks:

\[6 \mid n \Rightarrow 2 \mid n \]

This is \(\text{True} \)

If \(6 \mid n \), then \(n = 6k \) for some integer \(k \). Thus
\[n = 2 \cdot 3k \] thus \(2 \mid n \).

2. True or False. If true, prove it. If false, then give a counterexample. The sum of any two irrational numbers is irrational.

\(\sqrt{2} \) is irrational, \(-\sqrt{2} \) is irrational.

but \(\sqrt{2} + (-\sqrt{2}) = 0 \) which is rational.