## Math 142, Spring 2004, Exam 4, Solutions

PRINT Your Name: $\qquad$
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

I won't grade your exam until Monday. So don't be surprised if I don't e-mail your grade to you until then.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website on Monday.

1. A ball is dropped from the height of 30 feet. Each time it hits the floor it rebounds to $\frac{5}{6}$ its previous height. Find the total distance it travels. Explain what you are doing.
The ball goes down 30 feet, up (5/6)30 feet, down (5/6)30 feet, up $(5 / 6)^{2} 30$ feet, down $(5 / 6)^{2} 30$ feet, up $(5 / 6)^{3} 30$ feet, down $(5 / 6)^{3} 30$ feet, etc. The total distance travelled is

$$
30+\left((5 / 6) 60+(5 / 6)^{2} 60+(5 / 6)^{3} 60+(5 / 6)^{4} 60+\ldots\right) \text { feet. }
$$

The sum inside the big parenthenses is the geometric series with initial term $a=(5 / 6) 60$ and ratio $r=5 / 6$. We see that $-1<r<1$, so the geometric series converges to $\frac{a}{1-r}$. Thus the total distance travelled is

$$
30+\frac{(5 / 6) 60}{1-5 / 6} \text { feet. }=330 \text { feet. }
$$

2. Give a closed formula for $s_{n}=\sum_{k=2}^{n} \frac{1}{k-1}-\frac{1}{k+1}$. (Your formula should be exactly equal to the sum I have given. Your formula should not contain any dots or any summation signs.) Explain what you are doing.

This sum is equal to

$$
\begin{gathered}
s_{n}=\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{n-4}-\frac{1}{n-2}\right) \\
+\left(\frac{1}{n-3}-\frac{1}{n-1}\right)+\left(\frac{1}{n-2}-\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)
\end{gathered}
$$

The $1 / 3$ 's cancel. The $1 / 4$ 's cancel. The $-1 / 5$ cancels with the left most $+1 / 5$ from the first unwritten term. The $-1 / 6$ cancels with the left most $1 / 6$ of the second unwritten term., etc. Now look at the right side. The $\frac{1}{n-1}$ 's cancel. The $\frac{1}{n-2}$ 's cancel. The $\frac{1}{n-3}$ cancels with the right most $-\frac{1}{n-3}$ from the last unwritten term. The $\frac{1}{n-4}$ also cancels with a term in the middle. We are left with

$$
s_{n}=\frac{1}{1}+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1} .
$$

3. Approximate $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}$ with an error of at most $\frac{1}{500}$. Be sure to explain what you are doing and why you are allowed to do it.
The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}$ is an alternating series. The terms, in absolute value, are decreasing, since $\frac{1}{n^{4}}>\frac{1}{(n+1)^{4}}$ for all $n$. The terms go to zero, since $\lim _{n \rightarrow \infty} \frac{1}{n^{4}}=0$. The Alternating Series Test applies and tells us that the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}$ converges, and for each $N$

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}-\sum_{n=1}^{N}(-1)^{n+1} \frac{1}{n^{4}}\right| \leq \frac{1}{(N+1)^{4}}
$$

We look for (the smallest) $N$ with $\frac{1}{(N+1)^{4}}<\frac{1}{500}$. In other words, we want $500<(N+1)^{4}$. Recall that $4^{4}=256<500<625=5^{4}$. If $N=4$, then $\frac{1}{(N+1)^{4}}<\frac{1}{500}$. Thus,
$\frac{1}{1}-\frac{1}{2^{4}}+\frac{1}{3^{4}}-\frac{1}{4^{4}}$ approximates $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}$ with an error at most $\frac{1}{500}$.
4. Give an upper bound for the difference between $\sum_{n=1}^{5} \frac{1}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. I expect your upper bound to be relatively small and correct. Be sure to explain what you are doing and why you are allowed to do it.
The difference between $\sum_{n=1}^{5} \frac{1}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is $\sum_{n=6}^{\infty} \frac{1}{n^{3}}$. Draw a picture to see that

$$
\sum_{n=6}^{\infty} \frac{1}{n^{3}} \leq \int_{5}^{\infty} x^{-3} d x=\left.\lim _{b \rightarrow \infty} \frac{-1}{2 x^{2}}\right|_{5} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{2 b^{2}}+\frac{1}{50}=\frac{1}{50} .
$$

We conclude that

$$
\text { the difference between } \sum_{n=1}^{5} \frac{1}{n^{3}} \text { and } \sum_{n=1}^{\infty} \frac{1}{n^{3}} \text { is at most } \frac{1}{50} \text {. }
$$

5. Does the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^{3}}$ converge or diverge? Justify your answer. The series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is the $p$-series with $p=3>1$. This series converges. $|\sin n| \leq 1$; so $\frac{|\sin n|}{n^{3}} \leq \frac{1}{n^{3}}$. The comparison test tells us that $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{3}}$ converges. Thus, the Absolute Convergence Test tells us that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{\sin n}{n^{3}} \text { converges. }
$$

6. Does the series $\sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n}$ converge or diverge? Justify your answer. The Individual Term Test for Divergence tells us that the series

$$
\text { the series } \sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n} \text { diverges; }
$$

because $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{-1}{n}\right)^{n}=\frac{1}{e} \neq 0$.
7. Does the series $\sum_{n=1}^{\infty}\left(\frac{-3}{4}\right)^{n}$ converge or diverge? Justify your answer. This series is the geometric series with initial term $a=\frac{-3}{4}$ and ratio $r=\frac{-3}{4}$. We see that $-1<r<1$. We conclude that

$$
\text { the series } \sum_{n=1}^{\infty}\left(\frac{-3}{4}\right)^{n} \text { converges to } \frac{\frac{-3}{4}}{1-\frac{-3}{4}} \text {. }
$$

8. Does the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converge or diverge? Justify your answer.

Use the ratio test. We see that

$$
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0<1 .
$$

We conclude that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{2^{n}}{n!} \text { converges. }
$$

## 9. Where does the function

$$
f(x)=\frac{x-1}{1}+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}+\frac{(x-1)^{4}}{4}+\ldots
$$

converge? Justify your answer.
Write $f(x)=\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$. Apply the ratio test. Let

$$
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{|x-1|^{n+1}}{n+1}}{\frac{|x-1|^{n}}{n}}=\lim _{n \rightarrow \infty} \frac{|x-1| n}{n+1}=|x-1| .
$$

If $|x-1|<1$ (i.e., $-1<x-1<1$; i.e., $0<x<2$ ), then $f(x)$ converges. If $1<|x-1|$ (i.e., $x<0$ or $2<x$ ), then $f(x)$ diverges. When $x=0$, then

$$
f(0)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which is minus the Alternating Harmonic Series. This series converges. When $x=2$, then

$$
f(2)=\sum_{n=1}^{\infty} \frac{(1)^{n}}{n}
$$

which is the Harmonic Series. This series diverges. We conclude that

$$
f(x) \text { converges for } 0 \leq x<2 \text { and } f(x) \text { diverges everywhere else. }
$$

## 10. What familiar function is equal to

$$
f(x)=\frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots
$$

for $-1<x<1$ ? Justify your answer.
We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad \text { for }-1<x<1
$$

Integrate both sides to see that

$$
-\ln |1-x|+C=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots \quad \text { for }-1<x<1
$$

Notice that when $-1<x<1$, then $0<1-x$; so, $|1-x|=1-x$. Plug in $x=0$ to evaluate $C$ :

$$
-\ln 1+C=0
$$

so, $C=0$. We conclude that

$$
\frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots \text { is equal to }-\ln (1-x) \text { for }-1<x<1
$$

