MATH 142, EXAM 3, SPRING, 2004

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office after I have graded it. (I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 4:00 PM today.

1. Find $\int \sin ^{3} x \cos ^{2} x d x$. Check your answer.

Save one $\sin x$; convert the remaining $\sin ^{2} x$ to $1-\cos ^{2} x$. The original problem is

$$
\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x
$$

Let $u=\cos x$. It follows that $d u=-\sin x d x$, and the integral is

$$
\begin{gathered}
-\int\left(1-u^{2}\right) u^{2} d u=-\int\left(u^{2}-u^{4}\right) d u=-\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)+C \\
=-\left(\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}\right)+C
\end{gathered}
$$

Check. The derivative of the proposed answer is

$$
-\left(\cos ^{2} x(-\sin x)-\cos ^{4} x(-\sin x)\right)=\sin x \cos ^{2} x\left(1-\cos ^{2} x\right) \cdot \checkmark
$$

2. Find $\int x \ln x d x$. Check your answer.

Use integration by parts. Let $u=\ln x$ and $d v=x d x$. It follows that $d u=\frac{d x}{x}$ and $v=\frac{x^{2}}{2}$. The original problem is

$$
\int u d v=u v-\int v d u=\frac{x^{2} \ln x}{2}-\int \frac{x}{2} d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+C
$$

Check. The derivative of the proposed answer is

$$
\frac{x}{2}+x \ln x-\frac{x}{2} \cdot \checkmark
$$

3. Find $\int \frac{\ln x}{x} d x$. Check your answer.

Let $u=\ln x$. It follows that $d u=\frac{d x}{x}$. The original integral is equal to

$$
\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln x)^{2}}{2}+C
$$

Check. The derivative of the proposed answer is

$$
\ln x \cdot \frac{1}{x} \cdot \checkmark
$$

4. Find $\int \frac{4 x^{2}-2 x+1}{x\left(x^{2}+1\right)} d x$. Check your answer.

Write

$$
\frac{4 x^{2}-2 x+1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

Multiply both sides by $x\left(x^{2}+1\right)$ to obtain

$$
4 x^{2}-2 x+1=A\left(x^{2}+1\right)+(B x+C) x
$$

which is the same as

$$
4 x^{2}-2 x+1=(A+B) x^{2}+C x+A
$$

Equate the corresponding coefficients to see

$$
4=A+B, \quad-2=C, \quad 1=A
$$

So, $B=3$. Check what we have so far:

$$
\frac{1}{x}+\frac{3 x-2}{x^{2}+1}=\frac{x^{2}+1+3 x^{2}-2 x}{x\left(x^{2}+1\right)}=\frac{4 x^{2}-2 x+1}{x\left(x^{2}+1\right)} . \checkmark
$$

So, the original integral is equal to

$$
\int \frac{1}{x}+\frac{3 x-2}{x^{2}+1} d x=\ln |x|+\frac{3}{2} \ln \left(x^{2}+1\right)-2 \arctan x+C .
$$

5. Find $\int \frac{x+1}{(x-1)^{2}} d x$. Check your answer.

Write

$$
\frac{x+1}{(x-1)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}
$$

Multiply both sides by $(x-1)^{2}$ to get

$$
x+1=A(x-1)+B
$$

that is,

$$
x+1=A x+(B-A) .
$$

Equate the corresponding coefficients to conclude that $A=1$ and $B-A=1$; so, $B=2$. We check what we have so far:

$$
\frac{1}{x-1}+\frac{2}{(x-1)^{2}}=\frac{x-1+2}{(x-1)^{2}}=\frac{x+1}{(x-1)^{2}} \cdot \checkmark
$$

So the original integral is

$$
\int \frac{1}{x-1}+\frac{2}{(x-1)^{2}} d x=\ln |x-1|-\frac{2}{x-1}+C
$$

6. Find $\int \sqrt{1-x^{2}} d x$. Check your answer.

This integral contains an ugly $a^{2}-u^{2}$; so, I let $u=a \sin \theta$. That is, I let $x=\sin \theta$. It follows that $d x=\cos \theta d \theta$. Observe that

$$
\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} \theta}=\sqrt{\cos ^{2} \theta}=\cos \theta
$$

The original integral is equal to

$$
\begin{gathered}
\int \cos ^{2} \theta d \theta=\frac{1}{2} \int(1+\cos 2 \theta) d \theta \\
=\frac{1}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)+C=\frac{1}{2}\left(\arcsin x+\frac{2 \sin \theta \cos \theta}{2}\right)+C \\
=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)+C .
\end{gathered}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\frac{1}{2}\left(\frac{1}{\sqrt{1-x^{2}}}+\frac{-x^{2}}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}}\right)=\frac{1}{2}\left(\frac{1-x^{2}}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}}\right) \\
=\frac{1}{2}\left(\sqrt{1-x^{2}}+\sqrt{1-x^{2}}\right) \cdot \checkmark
\end{gathered}
$$

7. Find $\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}}$.

The top and the bottom both go to zero, so L'hopital's rule shows that the limit is

$$
\lim _{x \rightarrow 0} \frac{-\sin x+x}{4 x^{3}}
$$

The top and the bottom both go to zero, so L'hopital's rule shows that the limit is

$$
\lim _{x \rightarrow 0} \frac{-\cos x+1}{12 x^{2}}
$$

The top and the bottom both go to zero, so L'hopital's rule shows that the limit is

$$
\lim _{x \rightarrow 0} \frac{\sin x}{24 x} .
$$

The top and the bottom both go to zero, so L'hopital's rule shows that the limit is

$$
\lim _{x \rightarrow 0} \frac{\cos x}{24}=\frac{1}{24} .
$$

8. Find $\lim _{x \rightarrow 0} \frac{\cos x}{x-2}$.

The top goes to 1 and the bottom goes to -2 . The limit is $\frac{1}{-2}$.
9. Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n-1}{n+1}\right)^{n}$.

We must find

$$
\lim _{n \rightarrow \infty}\left(\frac{n-1}{n+1}\right)^{n}
$$

This limit has the indeterminate form that the base goes to 1 and the exponent goes to ∞. Let $y=\left(\frac{n-1}{n+1}\right)^{n}$. We must find $\lim _{n \rightarrow \infty} y$. We do find

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} n \ln \left(\frac{n-1}{n+1}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n-1}{n+1}\right)}{\frac{1}{n}}
$$

The top and the bottom both go to 0 . Apply L'hopital's rule to get that

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} \frac{\frac{1}{n-1}-\frac{1}{n+1}}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{-2 n^{2}}{n^{2}-1}=-2
$$

So, the answer is

$$
\lim _{n \rightarrow \infty} y=\lim _{n \rightarrow \infty} e^{\ln y}=e^{-2} .
$$

One could also do the problem by observing that

$$
\lim _{n \rightarrow \infty}\left(\frac{n-1}{n+1}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{(n+1)-2}{n+1}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{-2}{n+1}\right)^{n}
$$

Let $m=n+1$. This limit is equal to

$$
\lim _{m \rightarrow \infty}\left(1+\frac{-2}{m}\right)^{m-1}=\lim _{m \rightarrow \infty} \frac{\left(1+\frac{-2}{m}\right)^{m}}{1+\frac{-2}{m}}
$$

We know that

$$
\lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m}=e^{r}
$$

so, the limit of the top is e^{-2} and the limit of the bottom is 1 . Once again, we get the answer e^{-2}.
10. Find $\int_{-1}^{3} \frac{1}{x^{2}} d x$.

The function $f(x)=\frac{1}{x^{2}}$ goes to infinity as x approaches zero. For all x other than zero, $f(x)$ is positive. Thus, this integral represents an area. Either this integral is infinite; or else, the integral is finite and positive.

$$
\begin{gathered}
\int_{-1}^{3} \frac{1}{x^{2}} d x=\lim _{b \rightarrow 0^{-}} \int_{-1}^{b} \frac{1}{x^{2}} d x+\lim _{a \rightarrow 0^{+}} \int_{a}^{3} \frac{1}{x^{2}} d x \\
=\left.\lim _{b \rightarrow 0^{-}} \frac{-1}{x}\right|_{-1} ^{b}+\left.\lim _{a \rightarrow 0^{+}} \frac{-1}{x}\right|_{a} ^{3}=\lim _{b \rightarrow 0^{-}}\left(\frac{-1}{b}-\frac{-1}{-1}\right)+\lim _{a \rightarrow 0^{+}}\left(\frac{-1}{3}-\frac{-1}{a}\right) .
\end{gathered}
$$

Notice that

$$
\lim _{b \rightarrow 0^{-}}\left(\frac{-1}{b}\right)=+\infty \quad \text { and } \quad \lim _{a \rightarrow 0^{+}}\left(-\frac{-1}{a}\right)=+\infty
$$

Thus, the integral diverges to $+\infty$. Notice that $-\frac{4}{3}$ has NOTHING TO DO WITH THE FINAL ANSWER. An "answer" $-\frac{4}{3}$ will recieve a score of 0 .

