PRINT Your Name: \qquad
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office door tomorrow morning, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 4:00 PM today.

1. Find $\int e^{2 x+3} d x$. Check your answer.

Let $u=2 x+3$. It follows that $d u=2 d x$. The integral is

$$
\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{2 x+3}+C .
$$

Check. The derivative of the proposed answer is $\frac{1}{2} 2 e^{2 x+3}$.
2. Find $\int x e^{2 x^{2}+3} d x$. Check your answer.

Let $u=2 x^{2}+3$. It follows that $d u=4 x d x$. The integral is

$$
\frac{1}{4} \int e^{u} d u=\frac{1}{4} e^{u}+C=\frac{1}{4} e^{2 x^{2}+3}+C .
$$

Check. The derivative of the proposed answer is $\frac{1}{4} 4 x e^{2 x^{2}+3} \cdot \checkmark$
3. If $y=e^{\left(\frac{1}{x^{3}}\right)}+\frac{1}{e^{\left(x^{3}\right)}}$, then find $\frac{d y}{d x}$.

We see that $y=e^{\left(x^{-3}\right)}+e^{-x^{3}}$; therefore,

$$
\frac{d y}{d x}=-3 x^{-4} e^{\left(x^{-3}\right)}-3 x^{2} e^{-x^{3}}
$$

4. If $y=\sin x \ln x$, then find $\frac{d y}{d x}$.

Use the product rule:

$$
\frac{d y}{d x}=\sin x \frac{1}{x}+\ln x \cos x
$$

5. Find $\int \frac{\ln x}{x} d x$. Check your answer.

Let $u=\ln x$. Then, $d u=\frac{d x}{x}$ and the integral is equal to

$$
\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln x)^{2}}{2}+C
$$

Check. The derivative of the proposed answer is $\frac{2(\ln x)}{2} \frac{1}{x} . \checkmark$ NOTICE. The functions $(\ln x)^{2}$ and $\ln x^{2}$ are very DIFFERENT!

6. Find $\int \frac{e^{x}}{\sqrt{e^{x}+1}} d x$. Check your answer.

Let $u=e^{x}+1$. Then $d u=e^{x} d x$ and the integral is equal to

$$
\int u^{-1 / 2} d u=2 u^{1 / 2}+C=2 \sqrt{e^{x}+1}+C .
$$

Check. The derivative of the proposed answer is $2 \frac{1}{2}\left(e^{x}+1\right)^{-1 / 2} e^{x} . \checkmark$
7. Find the area of the region bounded by $y=e^{x}$, the y-axis, and the line $y=e^{2}$.

Look at the picture. The boundary on the left is $x=0$, on the right is $x=2$, on the top is $y=e^{2}$, and on the bottom is $y=e^{x}$. The area is

$$
\int_{0}^{2} e^{2}-e^{x} d x=e^{2} x-\left.e^{x}\right|_{0} ^{2}=\left(2 e^{2}-e^{2}\right)-(0-1)=e^{2}+1 .
$$

8. Let $f(x)=\frac{x-2}{x+3}$ for $x \neq-3$. Find $f^{-1}(x)$. What is the domain of $f^{-1}(x)$? Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of $f^{-1}(x)$.
Let $y=f^{-1}(x)$. Apply f to both sides to get $f(y)=x$. It follows that $\frac{y-2}{y+3}=x$; hence, $y-2=x(y+3)$ and $y(1-x)=3 x+2$. Divide to see that $y=\frac{3 x+2}{1-x}$. Thus $f^{-1}(x)=\frac{3 x+2}{1-x}$. The domain of $f^{-1}(x)$ is all real numbers x except $x=1$.
Take a real number x with $x \neq 1$, then

$$
f\left(f^{-1}(x)\right)=f\left(\frac{3 x+2}{1-x}\right)=\frac{\frac{3 x+2}{1-x}-2}{\frac{3 x+2}{1-x}+3}=\frac{3 x+2-2(1-x)}{3 x+2+3(1-x)}=\frac{5 x}{5}=x \checkmark .
$$

9. A bacterial population grows at a rate proportional to its size. Initially the population is 12,000 and after 6 days the population is 20,000 . How long will it take the population to triple? (You may leave "ln" in your answer.)
Let $P(t)$ be the size of the population at time t days. We are told that $\frac{d P}{d t}=k P$ for some constant k. It follows that $P(t)=P(0) e^{k t}$. We are also told that $P(0)=12,000$ and $P(6)=20,000$. So

$$
P(t)=12,000 e^{k t}
$$

holds for all t. Plug in $t=6$ to learn k :

$$
20,000=P(6)=12,000 e^{6 k}
$$

Thus, $\frac{20,000}{12,000}=e^{6 k}$ and $\ln \frac{5}{3}=6 k$; hence, $\frac{1}{6} \ln \left(\frac{5}{3}\right)=k$. Thus,

$$
P(t)=12,000 e^{\frac{t \ln \left(\frac{5}{3}\right)}{6}}
$$

holds for all t. We are supposed to find t with $P(t)=36,000$. So,

$$
36,000=P(t)=12,000 e^{\frac{t \ln \left(\frac{5}{3}\right)}{6}}
$$

that is, $3=e^{\frac{t \ln \left(\frac{5}{3}\right)}{6}}$ and $\ln 3=\frac{t \ln \left(\frac{5}{3}\right)}{6}$; therefore,

$$
t=\frac{6 \ln 3}{\ln \left(\frac{5}{3}\right)} \text { days. }
$$

10. Let $f(x)=x \ln x$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y=f(x)$. Graph $y=f(x)$.

$$
\text { The domain of } f(x) \text { is all positive real numbers } x \text {. }
$$

We see that $f^{\prime}(x)=1+\ln x$. So, $f^{\prime}(x)=0$, when $0=1+\ln x$; so $-1=\ln x$; that is, $x=e^{-1}$.

When $0<x<e^{-1}$, then $f^{\prime}(x)$ is negative and f is decreasing.

When $e^{-1}<x$, then $f^{\prime}(x)$ is positive and f is increasing.
The point $\left(e^{-1},-e^{-1}\right)$ is a local minimum. There is no local maximum.
The second derivative is $f^{\prime \prime}(x)=\frac{1}{x}$, which is always positive.

> The graph is always concave up, never concave down.

There are no points of inflection.
It is clear that $f(1)=0$. It is harder to compute $\lim _{x \rightarrow 0^{+}} x \ln x$. The factor x would like the answer to be zero. The factor $\ln x$ would like the answer to be $-\infty$. In Chapter 9, you will learn L'hopital's rule which will show that x wins this battle and $\lim _{x \rightarrow 0^{+}} x \ln x=0$. The picture is on another page.

