Find the area between \(y = \frac{2}{1+x^2} \) and \(y = |x| \).

Answer: Draw the picture. We see that \(\frac{2}{1+x^2} \) is above \(|x| \). The two graphs intersect when \(|x| = \frac{2}{1+x^2} \). The picture is symmetric across the \(y \)-axis, so we may as well take \(x > 0 \). The graphs intersect when \(x = \frac{2}{1+x^2} \). So, \(x(1+x^2) = 2 \); that is, \(x^3 + x - 2 = 0 \). It is clear that \(x = 1 \) is a solution of the equation. (There aren't any other real solutions because \(x^3 + x - 2 = (x - 1)(x^2 + x + 2) \) and \(x^2 + x + 2 \) has no real roots.) I will take advantage of the symmetry and double the area inside the part of the picture in the first quadrant. The answer is

\[
2 \int_0^1 \left(\frac{2}{1+x^2} - x \right) dx = 2 \left(2 \arctan x - \frac{x^2}{2} \right) \bigg|_0^1 = 2 \left(2 \frac{\pi}{4} - \frac{1}{2} \right) = \pi - 1.
\]