PRINT Your Name: \qquad

Quiz - August 31, 2006

Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{x}$.
Answer: There are two ways to do this problem.
Method 1: Maneuver the problem into a problem that you have already done and write down the answer. You might know that

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(1+\frac{r}{x}\right)^{x}=e^{r} \tag{}
\end{equation*}
$$

If so, then the given problem is $\left(^{*}\right)$ with $r=\frac{1}{2}$ and the answer is \sqrt{e}.
Method 2: Use L'Hopitals rule. Let $y=\left(1+\frac{1}{2 x}\right)^{x}$. We want to find $\lim _{x \rightarrow \infty} y$. We can find

$$
\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{2 x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{2 x}\right)}{\frac{1}{x}} .
$$

The top and the bottom both go to 0 , so L'Hopitals rule tells us that the last expression is equal to

$$
\lim _{x \rightarrow \infty} \frac{\frac{\frac{-1}{2 x^{2}}}{\left(1+\frac{1}{2 x}\right)}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{2\left(1+\frac{1}{2 x}\right)}=\frac{1}{2} .
$$

Thus, the answer is

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y}=e^{1 / 2} .
$$

