PRINT Your Name: \qquad

Quiz - August 31, 2004

Find the volume of the solid generated by revolving the region bounded by $y=e^{x}$, $y=0, x=0$, and $x=\ln 3$ about the x-axis.

Answer: Draw the picture. Our plan is to approximate the region by using discs. Chop the x-axis from $x=0$ to $x=\ln 3$ into small pieces. Over each piece draw a rectangle. Spin each rectangle. Get a disc (see the picture) of volume $\pi r^{2} t$, where t is the thickness (for us this is $d x$ which is a little piece of the x-axis) and r is the radius (for us this is the y-coordinate at the top of our rectangle minus the y-coordinate at the bottom of our rectangle, all written in terms of x; in other words: e^{x}). So each disc has volume $\pi\left(e^{x}\right)^{2} d x=\pi e^{2 x} d x$. We add up the volume inside all of the discs and take the limit. This amounts to finding the definite integral:

$$
\pi \int_{0}^{\ln 3} e^{2 x} d x=\left.\pi \frac{e^{2 x}}{2}\right|_{0} ^{\ln 3}=\frac{\pi}{2}\left(e^{2 \ln 3}-1\right)=\frac{\pi}{2}(9-1)=4 \pi .
$$

