PRINT Your Name: \qquad

Quiz - August 27, 2004

Let $f(x)=4 x^{2}$ for $x \leq 0$.
(a) Find $f^{-1}(x)$.
(b) What is the domain of $f^{-1}(x)$?
(c) Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.

Answer: Let $y=f^{-1}(x)$. So $f(y)=x$. (Notice, for future reference, that y is in the domain of f, so $y \leq 0$.) At any rate, we have $4 y^{2}=x$ and we want to find y. Divide both sides by 4 to get $y^{2}=\frac{1}{4} x$. Take the square root of both sides to get $y= \pm \frac{1}{2} \sqrt{x}$. We aren't finished because the we have not found a function for $f^{-1}(x)$. However, we saw above that $y \leq 0$; so $y=-\frac{1}{2} \sqrt{x}$. Our answer to (a) is $f^{-1}(x)=-\frac{1}{2} \sqrt{x}$. Our answer to (b) is all $x \geq 0$; because, we can insert any number which is non-negative into \sqrt{x}. For part (c), we start with $x \geq 0$. We observe that

$$
f\left(f^{-1}(x)\right)=f\left(-\frac{1}{2} \sqrt{x}\right)=4\left(-\frac{1}{2} \sqrt{x}\right)^{2}=4 \frac{1}{4}(\sqrt{x})^{2}=x
$$

