PRINT Your Name:

Quiz - August 27, 2004

Let $f(x) = 4x^2$ for $x \le 0$.

- (a) Find $f^{-1}(x)$.
- (b) What is the domain of $f^{-1}(x)$?
- (c) Verify that $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} .

Answer: Let $y = f^{-1}(x)$. So f(y) = x. (Notice, for future reference, that y is in the domain of f, so $y \leq 0$.) At any rate, we have $4y^2 = x$ and we want to find y. Divide both sides by 4 to get $y^2 = \frac{1}{4}x$. Take the square root of both sides to get $y = \pm \frac{1}{2}\sqrt{x}$. We aren't finished because the we have not found a **function** for $f^{-1}(x)$. However, we saw above that $y \leq 0$; so $y = -\frac{1}{2}\sqrt{x}$. Our answer to (a) is $\int f^{-1}(x) = -\frac{1}{2}\sqrt{x}$. Our answer to (b) is $\exists x \geq 0$; because, we can insert any number which is non-negative into \sqrt{x} . For part (c), we start with $x \geq 0$. We observe that

$$f(f^{-1}(x)) = f(-\frac{1}{2}\sqrt{x}) = 4(-\frac{1}{2}\sqrt{x})^2 = 4\frac{1}{4}(\sqrt{x})^2 = x. \checkmark$$