\qquad

Quiz - April 8, 2004

Consider the power series

$$
f(x)=1+\frac{x+1}{2}+\frac{(x+1)^{2}}{2^{2}}+\frac{(x+1)^{3}}{2^{3}}+\ldots
$$

For which x does $f(x)$ converge? Justify your answer.
Answer: The series is

$$
f(x)=\sum_{k=0}^{\infty} \frac{(x+1)^{k}}{2^{k}} .
$$

We apply the ratio test. Let

$$
\rho=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{\frac{(x+1)^{k+1}}{2^{k+1}}}{\frac{(x+1)^{k}}{2^{k}}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(x+1)^{k+1}}{2^{k+1}} \frac{2^{k}}{(x+1)^{k}}\right|=\lim _{k \rightarrow \infty} \frac{|x+1|}{2} .
$$

If $\rho<1$, then $f(x)$ converges. If $1<\rho$, then $f(x)$ diverges. We have to study $\rho=1$ further. Well, $\rho<1$ when $\frac{|x+1|}{2}<1$; that is $|x+1|<2$; that is, $-2<x+1<2$; or $-3<x<1$. We also see that $1<\rho$ for $x<-3$ also for $1<x$. The endpoints $x=-3$ and $x=1$ need special attention. We see that

$$
f(-3)=\sum_{k=0}^{\infty} \frac{(-2)^{k}}{2^{k}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k}}{2^{k}}=\sum_{k=0}^{\infty}(-1)^{k}
$$

which diverges by the Individual Term Test for Divergence since $\lim _{k \rightarrow \infty}(-1)^{k}$ does not exist; and hence is not equal to zero. Also,

$$
f(1)=\sum_{k=0}^{\infty} \frac{2^{k}}{2^{k}}=\sum_{k=0}^{\infty} 1
$$

which diverges by the Individual Term Test for Divergence since $\lim _{k \rightarrow \infty} 1=1$, which is not zero. We conclude that

$$
f(x) \text { converges for }-3<x<1 \text { and diverges everywhere else. }
$$

