PRINT Your Name: \qquad

Quiz - April 1, 2004

Does the series

$$
\frac{2}{1 \cdot 3 \cdot 4}+\frac{3}{2 \cdot 4 \cdot 5}+\frac{4}{3 \cdot 5 \cdot 6}+\frac{5}{4 \cdot 6 \cdot 7}+\cdots
$$

converge? Justify your answer.
Answer: The series is $\sum_{k=2}^{\infty} \frac{k}{(k-1)(k+1)(k+2)}$. We apply the limit comparison test to $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$. We see that the limit of the quotient of corresponding terms is

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{k}{(k-1)(k+1)(k+2)}}{\frac{1}{k^{2}}}=\lim _{k \rightarrow \infty} \frac{k^{3}}{(k-1)(k+1)(k+2)}
$$

Divide top and bottom by k^{3} to get $\lim _{k \rightarrow \infty} \frac{1}{\left(1-\frac{1}{k}\right)\left(1+\frac{1}{k}\right)\left(1+\frac{2}{k}\right)}=1$. We know that 1 is a number with $1 \neq 0$ and $1 \neq \infty$. We conclude that $\sum_{k=2}^{\infty} \frac{k}{(k-1)(k+1)(k+2)}$ and $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$ both converge or both diverge. On the other hand, $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$ is the p-series with $p=2>1$; thus, $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$ converges; hence, $\sum_{k=2}^{\infty} \frac{k}{(k-1)(k+1)(k+2)}$ also converges.

