\qquad
Quiz - March 30, 2004
Estimate the error that is made by approximating the sum of the series

$$
\sum_{k=1}^{\infty} \frac{1}{1+k^{2}}
$$

by using the sum of the first five terms. Show complete, coherent work.
Answer: The difference between

$$
\sum_{k=1}^{\infty} \frac{1}{1+k^{2}} \quad \text { and } \quad \sum_{k=1}^{5} \frac{1}{1+k^{2}}
$$

is

$$
\sum_{k=6}^{\infty} \frac{1}{1+k^{2}} .
$$

The function $f(x)=\frac{1}{1+x^{2}}$ is positive and decreasing. We can over estimate the value of $\sum_{k=6}^{\infty} \frac{1}{1+k^{2}}$ by approximating the area under $y=\frac{1}{1+x^{2}}$ from 5 to infinity. See my picture. Use rectangles with base 1, which under estimate the area under the curve. The area inside the rectangles is $\sum_{k=6}^{\infty} \frac{1}{1+k^{2}}$. The area under the curve is

$$
\begin{aligned}
\int_{5}^{\infty} \frac{1}{1+x^{2}} d x=\lim _{b \rightarrow \infty} \int_{5}^{b} \frac{1}{1+x^{2}} & d x=\left.\lim _{b \rightarrow \infty} \arctan x\right|_{5} ^{b}=\lim _{b \rightarrow \infty} \arctan b-\arctan 5 \\
= & \frac{\pi}{2}-\arctan 5
\end{aligned}
$$

I conclude that $\sum_{k=1}^{5} \frac{1}{1+k^{2}}$ approximates $\sum_{k=1}^{\infty} \frac{1}{1+k^{2}}$ with an error of at most $\frac{\pi}{2}-\arctan 5$. (I used my calculator to see that $\frac{\pi}{2}-\arctan 5<.2$)

