\qquad

Quiz - March 25, 2004

Find the sum of the series $\sum_{k=1}^{\infty} \frac{2}{(k+2) k}$. Show complete coherent work.
Answer: This is not an easy problem. Usually, the only series for which we can find the sum are geometric series or telescoping series. This series is not a geometric series. Maybe it is a telescoping series. That is, maybe $\frac{2}{(k+2) k}$ is equal to the difference of two nearby fractions. A sum of such things would telescope. Well, we could use the technique of partial fractions to see. Consider

$$
\frac{2}{(k+2) k}=\frac{A}{k}+\frac{B}{k+2} .
$$

Multiply through by $k(k+2)$ to see

$$
2=A(k+2)+B k .
$$

Plug $k=0$ in to see $A=1$. Plug $k=-2$ in to see that $B=-1$. Check that

$$
\frac{1}{k}+\frac{-1}{k+2}=\frac{k+2-k}{k(k+2)}=\frac{2}{(k+2) k} .
$$

The $n^{\text {th }}$ partial sum of the series is

$$
\begin{gathered}
s_{n}=\sum_{k=1}^{n} \frac{2}{(k+2) k}=\sum_{k=1}^{n}\left(\frac{1}{k}+\frac{-1}{k+2}\right) \\
=\left(\frac{1}{1}+\frac{-1}{3}\right)+\left(\frac{1}{2}+\frac{-1}{4}\right)+\left(\frac{1}{3}+\frac{-1}{5}\right)+\left(\frac{1}{4}+\frac{-1}{6}\right)+\ldots \\
\cdots+\left(\frac{1}{n-3}+\frac{-1}{n-1}\right)+\left(\frac{1}{n-2}+\frac{-1}{n}\right)+\left(\frac{1}{n-1}+\frac{-1}{n+1}\right)+\left(\frac{1}{n}+\frac{-1}{n+2}\right) .
\end{gathered}
$$

Cancel the $\frac{1}{3}$'s, the $\frac{1}{4}$'s, the $\frac{1}{5}$'s, the $\frac{1}{6}$'s, \ldots, the $\frac{1}{n-3}$'s, the $\frac{1}{n-2}$'s, the $\frac{1}{n-1}$'s, and the $\frac{1}{n}$'s. We are left with

$$
s_{n}=1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2} .
$$

We notice that the limit of the sequence of partial sums is equal to

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right)=\frac{3}{2} .
$$

We conclude that the series converges to $\frac{3}{2}$.

