PRINT Your Name: \qquad

Quiz - February 24, 2004

1. (5 points) Find

$$
\int \frac{3 x-13}{x^{2}+3 x-10} d x
$$

Answer:We see that $x^{2}+3 x-10=(x+5)(x-2)$. We set

$$
\frac{3 x-13}{x^{2}+3 x-10}=\frac{A}{x+5}+\frac{B}{x-2} .
$$

Multiply both sides by $(x+5)(x-2)$ to see that

$$
3 x-13=A(x-2)+B(x+5) .
$$

So

$$
3 x-13=(A+B) x+(-2 A+5 B)
$$

Equate the corresponding coefficients to see that

$$
\left\{\begin{array}{l}
3=A+B \\
-13=-2 A+5 B
\end{array}\right.
$$

Replace Equation 2 by equation 2 plus two copies of equation 1 to get:

$$
\left\{\begin{array}{l}
3=A+B \\
-7=+7 B
\end{array}\right.
$$

So $B=-1$ and $A=4$. By the way

$$
\frac{4}{x+5}+\frac{-1}{x-2}=\frac{4(x-2)-(x+5)}{(x+5)(x-2)}=\frac{3 x-13}{(x+5)(x-2)},
$$

as expected. So the original integral is equal to

$$
\int \frac{4}{x+5}+\frac{-1}{x-2} d x=4 \ln |x+5|-\ln |x-2|+C .
$$

2. (5 points) Find $\int \frac{1}{\sqrt{x^{2}+4}} d x$.

Answer: We do a Trig substitution. Let $x=2 \tan \theta$. It follows that $d x=2 \sec ^{2} \theta d \theta$,

$$
\sqrt{x^{2}+4}=\sqrt{4 \tan ^{2} \theta+4}=\sqrt{4\left(\tan ^{2} x+1\right)}=\sqrt{4 \sec ^{2} \theta}=2 \sec \theta
$$

and the integral is

$$
\int \frac{2 \sec ^{2} \theta}{2 \sec \theta} d \theta=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C=\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+C .
$$

Check: The derivative of the proposed answer is

$$
\begin{gathered}
\frac{\frac{2 x}{4 \sqrt{x^{2}+4}}+\frac{1}{2}}{\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}}=\frac{\frac{x}{\sqrt{x^{2}+4}}+1}{\sqrt{x^{2}+4}+x}=\frac{\left(\frac{x}{\sqrt{x^{2}+4}}+1\right) \sqrt{x^{2}+4}}{\left(\sqrt{x^{2}+4}+x\right) \sqrt{x^{2}+4}}=\frac{x+\sqrt{x^{2}+4}}{\left(\sqrt{x^{2}+4}+x\right) \sqrt{x^{2}+4}} \\
=\frac{1}{\sqrt{x^{2}+4}} \cdot \checkmark
\end{gathered}
$$

