PRINT Your Name:

Quiz - November 30, 2004

The tenth Taylor polynomial for $\sin x$ about $x=0$ is

$$
P_{10}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!} .
$$

Estimate the error that is introduced if $P_{10}(x)$ is used in place of $\sin x$ for $0 \leq x \leq \frac{\pi}{2}$. Justify your answer.
Answer: Taylor's Theorem tells us that

$$
\left|\sin x-P_{10}(x)\right|=\left|R_{10}(x)\right|=\left|\frac{f^{(11)}(c) x^{11}}{11!}\right|
$$

for some c with $0 \leq c \leq x$, where $f(x)=\sin x$. We know that $f^{(11)}(x)=$ $-\sin (x)$; hence, $\left|f^{(11)}(c)\right| \leq 1$. It follows that

$$
\left|\sin x-P_{10}(x)\right| \leq\left|\frac{\left(\frac{\pi}{2}\right)^{11}}{11!}\right|
$$

If you have a calculator handy, then you can calculate that $\frac{\left(\frac{\pi}{2}\right)^{11}}{11!} \cong 3.6 \times 10^{-6}$. The conclusion is that if $0 \leq x \leq \frac{\pi}{2}$, then $P_{10}(x)$ approximates $\sin x$ with an error of at most 3.6×10^{-6}.

