PRINT Your Name:

\qquad

Quiz - November 2, 2006

Find all values of x for which the series converges and find the sum of the series for those values of x. The series is

$$
\frac{1}{x^{2}}+\frac{2}{x^{3}}+\frac{4}{x^{4}}+\frac{8}{x^{5}}+\frac{16}{x^{6}}+\ldots
$$

Answer: The series is the geometric series with ratio $r=\frac{2}{x}$ and initial term $a=\frac{1}{x^{2}}$. If $-1<\frac{2}{x}<1$, then the series converges to

$$
\frac{a}{1-r}=\frac{\frac{1}{x^{2}}}{1-\frac{2}{x}}=\frac{1}{x^{2}-2 x}
$$

The expression " $-1<\frac{2}{x}<1$ " means that $-1<\frac{2}{x}$ AND at the very same time $\frac{2}{x}<1$. In particular, if $0<x$, then " $-1<\frac{2}{x}<1$ " is exactly the same as $2<x$. On the other hand, if $x<0$, then " $-1<\frac{2}{x}<1$ " is exactly the same as $x<-2$. We conclude that:

$$
\begin{gathered}
\frac{1}{x^{2}}+\frac{2}{x^{3}}+\frac{4}{x^{4}}+\frac{8}{x^{5}}+\frac{16}{x^{6}}+\ldots \text { converges if } x<-2 \text { OR if } 2<x . \\
\text { Furthermore, in these cases, the sum of the series is } \frac{1}{x^{2}-2 x} .
\end{gathered}
$$

