PRINT Your Name: \qquad

Quiz - October 5, 2004

Find

$$
\int \frac{x+1}{(x-3)^{2}} d x
$$

Check your answer.
Answer: Multiply both sides of

$$
\frac{x+1}{(x-3)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}
$$

by $(x-3)^{2}$ to get:

$$
x+1=A(x-3)+B
$$

so,

$$
x+1=A x+(-3 A+B) .
$$

Equate the coefficients to see that

$$
1=A, \quad 1=-3 A+B
$$

So, $A=1$ and $B=4$. We check that

$$
\frac{1}{x-3}+\frac{4}{(x-3)^{2}}=\frac{(x-3)+4}{(x-3)^{2}}=\frac{x+1}{(x-3)^{2}}
$$

So, the original problem is equal to

$$
\int \frac{1}{x-3}+\frac{4}{(x-3)^{2}} d x=\ln |x-3|-\frac{4}{x-3}+C
$$

Check: The derivative of the proposed answer is

$$
\frac{1}{x-3}+\frac{4}{(x-3)^{2}}
$$

and we have already seen that this is $\frac{x+1}{(x-3)^{2}}$.

