PRINT Your Name: \qquad

Quiz - October 31, 2006

Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=10$, and $a_{n}=\frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right]$ for $n \geq 2$. Prove that the sequence $\left\{a_{n}\right\}$ converges. Find the limit of the sequence $\left\{a_{n}\right\}$.

Answer: Suppose, for the time being, that the sequence converges. Let $L=\lim _{n \rightarrow \infty} a_{n}$. Take the limit of both sides of $a_{n}=\frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right]$ to see that

$$
L=\frac{1}{2}\left[L+\frac{3}{L}\right] .
$$

Multiply both sides by $2 L$ to see that $2 L^{2}=L^{2}+3$; so, $L^{2}=3$ and L is equal to $\sqrt{3}$ or $-\sqrt{3}$. All of the numbers a_{n} are non-negative; so L must be non-negative. We now know that, if L exists, then L must be $\sqrt{3}$.

We still have to prove that L exists. I will show that the sequence $\left\{a_{n}\right\}$ is a decreasing sequence of Real numbers which is bounded below by $\sqrt{3}$. The (dual of the) Completeness axiom tells us that the sequence $\left\{a_{n}\right\}$ has a limit.

I first show that $\sqrt{3} \leq a_{n}$ for all n. We see that $\sqrt{3} \leq a_{1}$. In general, we hope to show that

$$
\sqrt{3} \leq \frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right] .
$$

Multiply both sides by the positive number $2 a_{n-1}$. We hope to show

$$
2 \sqrt{3} a_{n-1} \leq a_{n-1}^{2}+3
$$

We hope to show that

$$
0 \leq a_{n-1}^{2}-2 \sqrt{3} a_{n-1}+3
$$

The right side factors as $\left(a_{n-1}-\sqrt{3}\right)^{2}$, and this perfect square is non-negative. Read the calculation from the bottom up to see that $\sqrt{3} \leq a_{n}$ for all n. That is, We know that $\left(a_{n-1}-\sqrt{3}\right)^{2}$ is a perfect square and is non-negative. Expand to get $0 \leq a_{n-1}^{2}-2 \sqrt{3} a_{n-1}+3$. Add $2 \sqrt{3} a_{n-1}$ to both sides to see that

$$
2 \sqrt{3} a_{n-1} \leq a_{n-1}^{2}+3
$$

Divide both sides by the non-negative number $2 a_{n-1}$ to see that

$$
\sqrt{3} \leq \frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right] .
$$

The right side is equal to a_{n}. We have shown that $\sqrt{3} \leq a_{n}$ for all n.

Finally, I show that $a_{n} \leq a_{n-1}$, for all $n \geq 2$. I will show that

$$
\frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right] \leq a_{n-1}
$$

Multiply by the positive number $2 a_{n-1}$. We hope to show that

$$
a_{n-1}^{2}+3 \leq 2 a_{n-1}^{2}
$$

We hope to show that

$$
0 \leq a_{n-1}^{2}-3
$$

We hope to show that

$$
0 \leq\left(a_{n-1}+\sqrt{3}\right)\left(a_{n-1}-\sqrt{3}\right) .
$$

Divide by the positive number $\left(a_{n-1}+\sqrt{3}\right)$. We hope to show

$$
0 \leq a_{n-1}-\sqrt{3}
$$

Fortunately, we have already shown that every member of the sequence is at least $\sqrt{3}$. Read the calculation from the bottom to the top to see that $a_{n} \leq a_{n-1}$. That is, we already showed that

$$
0 \leq a_{n-1}-\sqrt{3}
$$

for all $n \geq 2$. Multiply both sides by the positive number $\left(a_{n-1}+\sqrt{3}\right)$ to see that

$$
0 \leq a_{n-1}^{2}-3
$$

for all $n \geq 3$. Add $a_{n-1}^{2}+\sqrt{3}$ to both sides to see that

$$
a_{n-1}^{2}+3 \leq 2 a_{n-1}^{2} .
$$

Divide both sides by the positive number $2 a_{n-1}$ to see

$$
\frac{1}{2}\left[a_{n-1}+\frac{3}{a_{n-1}}\right] \leq a_{n-1} .
$$

The left side is a_{n}. We conclude that $a_{n} \leq a_{n-1}$ for all $n \geq 2$.

