Consider the sequence \(\{ a_n \} \) with \(a_1 = 10 \), and \(a_n = \frac{1}{2} [a_{n-1} + \frac{3}{a_{n-1}}] \) for \(n \geq 2 \). Prove that the sequence \(\{ a_n \} \) converges. Find the limit of the sequence \(\{ a_n \} \).

Answer: Suppose, for the time being, that the sequence converges. Let \(L = \lim_{n \to \infty} a_n \). Take the limit of both sides of \(a_n = \frac{1}{2} [a_{n-1} + \frac{3}{a_{n-1}}] \) to see that

\[
L = \frac{1}{2} [L + \frac{3}{L}].
\]

Multiply both sides by \(2L \) to see that \(2L^2 = L^2 + 3 \); so, \(L^2 = 3 \) and \(L \) is equal to \(\sqrt{3} \) or \(-\sqrt{3} \). All of the numbers \(a_n \) are non-negative; so \(L \) must be non-negative. We now know that, if \(L \) exists, then \(L \) must be \(\sqrt{3} \).

We still have to prove that \(L \) exists. I will show that the sequence \(\{ a_n \} \) is a decreasing sequence of Real numbers which is bounded below by \(\sqrt{3} \). The (dual of the) Completeness axiom tells us that the sequence \(\{ a_n \} \) has a limit.

I first show that \(\sqrt{3} \leq a_n \) for all \(n \). We see that \(\sqrt{3} \leq a_1 \). In general, we hope to show that

\[
\sqrt{3} \leq \frac{1}{2} [a_{n-1} + \frac{3}{a_{n-1}}].
\]

Multiply both sides by the positive number \(2a_{n-1} \). We hope to show

\[
2\sqrt{3}a_{n-1} \leq a_{n-1}^2 + 3.
\]

We hope to show that

\[
0 \leq a_{n-1}^2 - 2\sqrt{3}a_{n-1} + 3.
\]

The right side factors as \((a_{n-1} - \sqrt{3})^2 \), and this perfect square is non-negative. Read the calculation from the bottom up to see that \(\sqrt{3} \leq a_n \) for all \(n \). That is, We know that \((a_{n-1} - \sqrt{3})^2 \) is a perfect square and is non-negative. Expand to get \(0 \leq a_{n-1}^2 - 2\sqrt{3}a_{n-1} + 3 \). Add \(2\sqrt{3}a_{n-1} \) to both sides to see that

\[
2\sqrt{3}a_{n-1} \leq a_{n-1}^2 + 3.
\]

Divide both sides by the non-negative number \(2a_{n-1} \) to see that

\[
\sqrt{3} \leq \frac{1}{2} [a_{n-1} + \frac{3}{a_{n-1}}].
\]

The right side is equal to \(a_n \). We have shown that \(\sqrt{3} \leq a_n \) for all \(n \).
Finally, I show that $a_n \leq a_{n-1}$, for all $n \geq 2$. I will show that

$$\frac{1}{2}[a_{n-1} + \frac{3}{a_{n-1}}] \leq a_{n-1}.$$

Multiply by the positive number $2a_{n-1}$. We hope to show that

$$a_{n-1}^2 + 3 \leq 2a_{n-1}^2.$$

We hope to show that

$$0 \leq a_{n-1}^2 - 3$$

We hope to show that

$$0 \leq (a_{n-1} + \sqrt{3})(a_{n-1} - \sqrt{3}).$$

Divide by the positive number $(a_{n-1} + \sqrt{3})$. We hope to show

$$0 \leq a_{n-1} - \sqrt{3}.$$

Fortunately, we have already shown that every member of the sequence is at least $\sqrt{3}$. Read the calculation from the bottom to the top to see that $a_n \leq a_{n-1}$. That is, we already showed that

$$0 \leq a_{n-1} - \sqrt{3}$$

for all $n \geq 2$. Multiply both sides by the positive number $(a_{n-1} + \sqrt{3})$ to see that

$$0 \leq a_{n-1}^2 - 3$$

for all $n \geq 3$. Add $a_{n-1}^2 + \sqrt{3}$ to both sides to see that

$$a_{n-1}^2 + 3 \leq 2a_{n-1}^2.$$

Divide both sides by the positive number $2a_{n-1}$ to see

$$\frac{1}{2}[a_{n-1} + \frac{3}{a_{n-1}}] \leq a_{n-1}.$$

The left side is a_n. We conclude that $a_n \leq a_{n-1}$ for all $n \geq 2$.