\qquad

Quiz - October 29, 2004

Does the series $\sum_{k=1}^{\infty} \frac{2}{(k+2) k}$ converge or diverge? If the series converges, find its sum.

Answer: If one thinks to try partial fractions on the fraction $\frac{2}{(k+2) k}$, then one can see that this series is a telecoping series and thereby find the sum of the series. Multiply

$$
\frac{2}{(k+2) k}=\frac{A}{k+2}+\frac{B}{k}
$$

by $(k+2) k$ to see that

$$
2=A k+B(k+2)
$$

or

$$
2=(A+B) k+2 B
$$

Equate the corresponding coefficients to see that $B=1$ and $A=-1$. Thus, the series is

$$
\sum_{k=1}^{\infty}\left[\frac{1}{k}-\frac{1}{k+2}\right]
$$

The $n^{\text {th }}$ partial sum is

$$
\begin{gathered}
s_{n}=\sum_{k=1}^{n}\left[\frac{1}{k}-\frac{1}{k+2}\right] \\
=\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n-2}-\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right) \\
=\frac{1}{1}+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2} .
\end{gathered}
$$

The sum of the series is the limit of the sequence of partial sums. So the sum of the series is

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1}{1}+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}=\frac{3}{2} .
$$

We conclude that the series converges to $\frac{3}{2}$.

