PRINT Your Name:

\qquad

Quiz - October 17, 2006

Let a_{n} be the average value of $f(x)=\frac{1}{x}$ over the interval $[1, n]$. Determine whether the sequence $\left\{a_{n}\right\}$ converges, and, if so, find its limit.

Answer: We see that

$$
a_{n}=\frac{1}{n-1} \int_{1}^{n} \frac{1}{x} d x=\left.\frac{1}{n-1} \ln x\right|_{1} ^{n}=\frac{1}{n-1} \ln n
$$

It follows that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{n-1}
$$

The top and the bottom both go to infty. We use L'hopital's rule to see that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1}=0
$$

We conclude that the sequence $\left\{a_{n}\right\}$ converges to 0 .

