PRINT Your Name: \qquad

Quiz - October 10, 2006

Find $\int \frac{x^{3}+3 x^{2}+x+9}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$.
Answer: Use the method of partial fractions. Set

$$
\frac{x^{3}+3 x^{2}+x+9}{\left(x^{2}+1\right)\left(x^{2}+3\right)}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{x^{2}+3} .
$$

Multiply both sides by $\left(x^{2}+1\right)\left(x^{2}+3\right)$ to get

$$
x^{3}+3 x^{2}+x+9=(A x+B)\left(x^{2}+3\right)+(C x+D)\left(x^{2}+1\right)
$$

Clean this up to be

$$
\begin{array}{rlll}
x^{3}+3 x^{2}+x+9= & A x^{3} & & +3 A x \\
& +C x^{3} & & \\
& & +C x & +3 B \\
& & +D x^{2} & \\
& & +D
\end{array}
$$

Equate the corresponding coefficients to see that

$$
1=A+C, \quad 3=B+D, \quad 1=3 A+C, \quad 9=3 B+D
$$

Subtract $1=3 A+C$ minus $1=A+C$ to see $0=2 A$ or $0=A$ and therefore $C=1$. Subtract $9=3 B+D$ minus $3=B+D$ to see $6=2 B$ or $3=B$ and therefore $D=0$. At this point we claim that

$$
\frac{x^{3}+3 x^{2}+x+9}{\left(x^{2}+1\right)\left(x^{2}+3\right)}=\frac{3}{x^{2}+1}+\frac{x}{x^{2}+3} .
$$

Let us check this much before we go any further. The right side is

$$
\frac{3 x^{2}+9+x^{3}+x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

as we expected. So, the original problem is

$$
\int \frac{3}{x^{2}+1}+\frac{x}{x^{2}+3} d x=3 \arctan x+\frac{1}{2} \ln \left(x^{2}+3\right)+C .
$$

