Find
\[\int \arctan x \, dx. \]

Check your answer.

Answer: Use integration by parts

\[\int u \, dv = uv - \int v \, du. \]

Take \(u = \arctan x \) and \(dv = dx \). It follows that \(du = \frac{dx}{1+x^2} \) and \(v = x \). The original integral equals

\[x \arctan x - \int \frac{x \, dx}{1+x^2} = x \arctan x - \frac{1}{2} \ln(1+x^2) + C. \]

Check: The derivative of the proposed answer is

\[\frac{x}{1+x^2} + \arctan x - \frac{1}{2} \frac{2x}{1+x^2}. \]