PRINT Your Name:

Quiz 9 - March 16, 2012 - Section 7 - 11:15-12:05

Remove everything from your desk except a pencil or pen.

Write in complete sentences.
The quiz is worth 5 points.
Consider the series $\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$.

1. Find a closed formula for the $N^{\text {th }}$ partial sum $s_{N}=\sum_{n=1}^{N}\left(e^{1 / n}-e^{1 /(n+1)}\right)$. Please notice that N and n are different!
2. Does the series $\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$ converge? Explain your answer very thoroughly.
3. Find the sum of the series $\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$, if possible. Explain your answer very thoroughly.

Answer:

1. We see that

$$
\begin{gathered}
s_{N}=\sum_{n=1}^{N}\left(e^{1 / n}-e^{1 /(n+1)}\right)=\left(e^{1 / 1}-e^{1 / 2}\right)+\left(e^{1 / 2}-e^{1 / 3}\right)+\cdots+\left(e^{1 / N}-e^{1 /(N+1)}\right) \\
=e-e^{1 /(N+1)}
\end{gathered}
$$

2. and 3. We compute $\lim _{N \rightarrow \infty} s_{N}=\lim _{N \rightarrow \infty}\left(e-e^{1 /(N+1)}\right)=e-e^{0}=e-1$. We conclude that the series $\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)$ converges to $e-1$.
