Quiz 9 - October 20, 2010 - Section 10 - 11:15-12:05

Does the series $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$ converge? Justify your answer very thoroughly.
Answer. We compare the given series to $\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n}}$, which is a geometric series with ratio $\frac{9}{10}$ which is less than 1 . Thus $\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n}}$ converges. We see that $0<\frac{9^{n}}{3+10^{n}}<\frac{9^{n}}{10^{n}}$.
We apply the comparison test to conclude that $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$ also converges.

