
Quiz 8 — March 16, 2011 – Section 3 – 8:00-8:50 recitation.

Consider the series
∞
∑

n=2

2
n2

−1
.

(a) Let M ≥ 2 be some fixed integer. Find a closed formula for the partial sum

sM =
M
∑

n=2

2
n2

−1 . (Comment. It is possible to use the technique of partial fractions

to express this series as a telescoping series.)
(b) What is the sum of the series?

Answer. Write 2
n2

−1 = A

n−1 + B

n+1 . Multiply by n2 − 1 to see that

2 = A(n+ 1) +B(n− 1).

Plug in n = 1 to see that 1 = A. Plug in n = −1 to see that B = −1. This works
becasue
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(a) We see that
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(b) The sum of the series is

lim
M→∞

sM = lim
M→∞
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=

3

2
.
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