Quiz 8 - October 13, 2010 - Section 10 - 11:15-12:05

Consider the series $\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}$.
(a) Let $M \geq 2$ be some fixed integer. Find a closed formula for the partial sum $s_{M}=\sum_{n=2}^{M} \frac{2}{n^{2}-1}$. (Comment. It is possible to use the technique of partial fractions to express this series as a telescoping series.)
(b) What is the sum of the series?

Answer. Write $\frac{2}{n^{2}-1}=\frac{A}{n-1}+\frac{B}{n+1}$. Multiply by $n^{2}-1$ to see that

$$
2=A(n+1)+B(n-1) .
$$

Plug in $n=1$ to see that $1=A$. Plug in $n=-1$ to see that $B=-1$. This works becasue

$$
\frac{1}{n-1}+\frac{-1}{n+1}=\frac{n+1-(n-1)}{n^{2}-1}=\frac{2}{n^{2}-1} .
$$

(a) We see that

$$
\begin{aligned}
& s_{M}=\sum_{n=2}^{M} \frac{2}{n^{2}-1}=\sum_{n=2}^{M}\left[\frac{1}{n-1}-\frac{1}{n+1}\right] \\
& =\left\{\begin{array}{l}
{\left[\frac{1}{2-1}-\frac{1}{2+1}\right]+\left[\frac{1}{3-1}-\frac{1}{3+1}\right]+\left[\frac{1}{4-1}-\frac{1}{4+1}\right]+\left[\frac{1}{5-1}-\frac{1}{5+1}\right]+\ldots} \\
\cdots+\left[\frac{1}{(M-2)-1}-\frac{1}{(M-2)+1}\right]+\left[\frac{1}{(M-1)-1}-\frac{1}{(M-1)+1}\right]+\left[\frac{1}{M-1}-\frac{1}{M+1}\right]
\end{array}\right. \\
& =\left\{\begin{array}{l}
{\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{2}-\frac{1}{4}\right]+\left[\frac{1}{3}-\frac{1}{5}\right]+\left[\frac{1}{4}-\frac{1}{6}\right]+\ldots} \\
\cdots+\left[\frac{1}{M-3}-\frac{1}{M-1}\right]+\left[\frac{1}{M-2}-\frac{1}{M}\right]+\left[\frac{1}{M-1}-\frac{1}{M+1}\right]
\end{array}\right.
\end{aligned}
$$

(b) The sum of the series is

$$
\lim _{M \rightarrow \infty} s_{M}=\lim _{M \rightarrow \infty} \frac{3}{2}-\frac{1}{M}-\frac{1}{M+1}=\frac{3}{2} .
$$

