PRINT Your Name: Quiz 8 — March 7, 2014 – Section 8 – 10:50 – 11:40

Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Circle your answer. Show your work. Your work must be correct and coherent.

The quiz is worth 5 points.

Consider the sequence whose n^{th} is $a_n = \ln(2n^2+1) - \ln(n^2+1)$. Does this sequence converge? If so, find its limit.

Answer: Use the rules of logorithm and divide the top and the bottom by n^2 to see that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\ln(2n^2 + 1) - \ln(n^2 + 1)) = \lim_{n \to \infty} \ln\left(\frac{2n^2 + 1}{n^2 + 1}\right) = \lim_{n \to \infty} \ln\left(\frac{2 + \frac{1}{n^2}}{1 + \frac{1}{n^2}}\right)$$

 $= \ln 2.$

We conclude that the sequence converges to $\ln 2$.