PRINT Your Name:

Quiz 8 - October 2, 2009 - 9:05 section

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work. Check your answer!
The quiz is worth 5 points.
Compute $\int \frac{d x}{2 x^{2}+4 x+7}$.
Answer: Complete the square: $2 x^{2}+4 x+7=2\left(x^{2}+2 x+\boxed{1}\right)+7-\boxed{2}=2(x+1)^{2}+5$.
Let $\sqrt{2}(x+1)=\sqrt{5} \tan \theta$. It follows that $\sqrt{2} d x=\sqrt{5} \sec ^{2} \theta d \theta$. We compute

$$
2(x+1)^{2}+5=5 \tan ^{2} \theta+5=5\left(\tan ^{2} \theta+1\right)=5 \sec ^{2} \theta
$$

The integral is

$$
\int \frac{\frac{\sqrt{5} \sec ^{2} \theta d \theta}{\sqrt{2}}}{5 \sec ^{2} \theta}=\frac{1}{\sqrt{10}} \int d \theta=\frac{1}{\sqrt{10}} \theta+C=\frac{1}{\sqrt{10}} \arctan \left(\frac{\sqrt{2}(x+1)}{\sqrt{5}}\right)+C .
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{10}}\right)\left(\frac{\sqrt{2}}{\sqrt{5}}\right)\left(\frac{1}{1+\left(\frac{\sqrt{2}(x+1)}{\sqrt{5}}\right)^{2}}\right)=\left(\frac{1}{5}\right)\left(\frac{1}{1+\left(\frac{\sqrt{2}(x+1)}{\sqrt{5}}\right)^{2}}\right) \\
= & \left(\frac{1}{5+(\sqrt{2}(x+1))^{2}}\right)=\left(\frac{1}{5+\left(2\left(x^{2}+2 x+1\right)\right)}\right)=\frac{1}{2 x^{2}+4 x+7} .
\end{aligned}
$$

