PRINT Your Name:

Quiz 7 - February 24, 2012 - Section 7 - 11:15-12:05

Remove everything from your desk except a pencil or pen.

Write in complete sentences.

The quiz is worth 5 points.
Consider the sequence defined by $a_{1}=2$ and $a_{n+1}=\frac{1}{3-a_{n}}$.

1. Prove that $0<a_{n} \leq 2$ for all positive integers n.
2. Prove that $a_{n+1} \leq a_{n}$ for all positive integers n.
3. State the Completeness Axiom and draw a conclusion about the sequence $\left\{a_{n}\right\}$ from the Completeness Axiom.
4. Find the limit of the sequence $\left\{a_{n}\right\}$.

Answer:

(1) We use the technique of Mathematical Induction. We see that $a_{1}=2$ and therefore, $0<a_{1} \leq 2$. Assume BY INDUCTION that $0<a_{n-1} \leq 2$ for some FIXED n. Multiply by -1 to see $-2 \leq-a_{n-1}<0$. Add 3 to see $1 \leq 3-a_{n-1}<3$; that is $1 \leq 3-a_{n-1}$ and $3-a_{n-1}<3$. Divide the first inequality by the positive number $3-a_{n-1}$ to obtain $\frac{1}{3-a_{n-1}} \leq 1$. Divide the second inequality by the positive number $\left(3-a_{n-1}\right) 3$ to see $\frac{1}{3}<\frac{1}{3-a_{n-1}}$. Put the inequalities back together to see: $\frac{1}{3}<\frac{1}{3-a_{n-1}} \leq 1$. We have shown that

$$
0<a_{n-1} \leq 2 \Longrightarrow \frac{1}{3}<\frac{1}{3-a_{n-1}} \leq 1
$$

Obviously, $\frac{1}{3-a_{n-1}}=a_{n}, 0<\frac{1}{3}$ and $1 \leq 2$; so,

$$
0<a_{n-1} \leq 2 \Longrightarrow 0<a_{n} \leq 2 .
$$

We saw that $0<a_{1} \leq 2$. for $n=1$. We proved that if $0<a_{n-1} \leq 2$ for some FIXED n, then $0<a_{n} \leq 2$ also holds for that one FIXED n. We apply the Principle of Mathematical Induction to conclude that $0<a_{n} \leq 2$ for ALL positive integers n.
(2) We use the technique of Mathematical Induction. We see that $a_{1}=2$ and $a_{2}=1$; so $a_{2} \leq a_{1}$. Assume BY INDUCTION that $a_{n} \leq a_{n-1}$ for some FIXED n. Add $-a_{n}-a_{n-1}$ to both sides to see $-a_{n-1} \leq-a_{n}$. Add 3 to both sides to see: $3-a_{n-1} \leq 3-a_{n}$. Both numbers are positive because part (1) shows that $a_{n} \leq 2$ for all n. Divide both sides by the positive number $\left(3-a_{n-1}\right)\left(3-a_{n}\right)$ to obtain $\frac{1}{3-a_{n}} \leq \frac{1}{3-a_{n-1}}$ and this is $a_{n+1} \leq a_{n}$. Thus

$$
a_{n} \leq a_{n-1} \Longrightarrow a_{n+1} \leq a_{n}
$$

We saw that $a_{n+1} \leq a_{n}$ for $n=1$. We proved that if $a_{n} \leq a_{n-1}$ for some FIXED n, then $a_{n+1} \leq a_{n}$ also holds for that one FIXED n. We apply the Principle of Mathematical Induction to conclude that $a_{n+1} \leq a_{n}$ for ALL positive integers n.
(3) The completeness axiom says that every decreasing bounded sequence of real numbers has a limit. We showed in (1) and (2) that $\left\{a_{n}\right\}$ is an decreasing bounded sequence of real numbers. We conclude that $\lim _{n \rightarrow \infty} a_{n}$ exists. Let $L=\lim _{n \rightarrow \infty} a_{n}$.
(4) Take $\lim _{n \rightarrow \infty}$ of both sides of $a_{n+1}=\frac{1}{3-a_{n}}$ to conclude that

$$
\lim _{n \rightarrow \infty} a_{n+1}=\frac{1}{3-\lim _{n \rightarrow \infty} a_{n}}
$$

that is, $L=\frac{1}{3-L}$; so $L(3-L)=1$ or $-L^{2}+3 L=1$. We use the quadratic formula to solve $0=L^{2}-3 L+1$. We obtain $L=\frac{3 \pm \sqrt{9-4}}{2}$. We know that L can not be more than 2 because every term in the sequence is less than or equal to 2 . So $L \neq \frac{3+\sqrt{5}}{2}$ and hence L does equal $\frac{3-\sqrt{5}}{2}$.

