PRINT Your Name:
Quiz 6 - September 25, 2009 - 8:00 section

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work.

The quiz is worth 5 points.
A particle moving along the x-axis has velocity function $v(t)=t^{3} \sin t$. How far does the particle travel from time $t=0$ to $t=\pi$.

Answer: The velocity is always positive; so the distance traveled is

$$
\int_{0}^{\pi} t^{3} \sin t d t
$$

We apply integration by parts: $\int u d v=u v-\int v d u$ three times. In the first application, let $u=t^{3}$ and $d v=\sin t d t$. It follows that $d u=3 t^{2} d t$ and $v=-\cos t$. Thus the distance traveled is

$$
=\left[-t^{3} \cos t+\int 3 t^{2} \cos t d t\right]_{0}^{\pi}
$$

Now let $u=t^{2}$ and $d v=\cos t d t$; so $d u=2 t d t$ and $v=\sin t$. The distance traveled is

$$
=\left[-t^{3} \cos t+3\left(t^{2} \sin t-2 \int t \sin t d t\right)\right]_{0}^{\pi}
$$

Now let $u=t$ and $d v=\sin t d t$; so $d u=d t$ and $v=-\cos t$. The distance traveled is

$$
\begin{gathered}
=\left[-t^{3} \cos t+3 t^{2} \sin t-6\left(-t \cos t+\int \cos t d t\right)\right]_{0}^{\pi} \\
=\left[-t^{3} \cos t+3 t^{2} \sin t+6 t \cos t-6 \sin t\right]_{0}^{\pi} \\
=\pi^{3}-6 \pi
\end{gathered}
$$

Check: The derivative of

$$
-t^{3} \cos t+3 t^{2} \sin t+6 t \cos t-6 \sin t
$$

is

$$
t^{3} \sin t-3 t^{2} \cos t+3 t^{2} \cos t+6 t \sin t-6 t \sin t+6 \cos t-6 \cos t=t^{3} \sin t
$$

as expected.

