PRINT Your Name:

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work.

The quiz is worth 5 points.

A particle moving along the x-axis has velocity function $v(t) = t^3 \sin t$. How far does the particle travel from time t = 0 to $t = \pi$.

Answer: The velocity is always positive; so the distance traveled is

$$\int_0^{\pi} t^3 \sin t dt.$$

We apply integration by parts: $\int u dv = uv - \int v du$ three times. In the first application, let $u = t^3$ and $dv = \sin t dt$. It follows that $du = 3t^2 dt$ and $v = -\cos t$. Thus the distance traveled is

$$= \left[-t^3 \cos t + \int 3t^2 \cos t dt \right]_0^{\pi}.$$

Now let $u = t^2$ and $dv = \cos t dt$; so du = 2t dt and $v = \sin t$. The distance traveled is

$$= \left[-t^3\cos t + 3\left(t^2\sin t - 2\int t\sin tdt\right)\right]_0^{\pi}.$$

Now let u = t and $dv = \sin t dt$; so du = dt and $v = -\cos t$. The distance traveled is

$$= \left[-t^{3} \cos t + 3t^{2} \sin t - 6 \left(-t \cos t + \int \cos t dt \right) \right]_{0}^{\pi}$$
$$= \left[-t^{3} \cos t + 3t^{2} \sin t + 6t \cos t - 6 \sin t \right]_{0}^{\pi}$$
$$= \overline{\pi^{3} - 6\pi}.$$

Check: The derivative of

$$-t^{3}\cos t + 3t^{2}\sin t + 6t\cos t - 6\sin t$$

is

$$t^{3}\sin t - 3t^{2}\cos t + 3t^{2}\cos t + 6t\sin t - 6t\sin t + 6\cos t - 6\cos t = t^{3}\sin t,$$

as expected. \checkmark