PRINT Your Name:

Quiz 5 - September 16, 2011 - Section 8 - 11:15-12:05

Remove everything from your desk except a pencil or pen.

Circle your answer. Show your work. Your work should be correct and coherent. CHECK your answer.
The quiz is worth 5 points.
Find $\int \frac{d x}{1+e^{x}} d x$.
Answer: Let $u=e^{x}$. It follows that $d u=e^{x} d x$; hence $\frac{d u}{u}=d x$. The original integral is equal to $\int \frac{d u}{u(1+u)}$. We use the technique of partial fractions to write

$$
\frac{1}{u(u+1)}=\frac{A}{u} \frac{B}{(1+u)} .
$$

So $1=A(1+u)+B u$. Plug in $u=0$ to learn $A=1$. Plug in $u=-1$ to learn $B=-1$. We conclude $\frac{1}{u(u+1)}=\frac{1}{u}-\frac{1}{1+u}$. (This is correct.) The original integral is equal to

$$
\begin{gathered}
\int\left(\frac{1}{u}-\frac{1}{1+u}\right) d u=\ln |u|-\ln |1+u|+C=\ln \left|e^{x}\right|-\ln \left|1+e^{x}\right|+C \\
=\ln e^{x}-\ln \left(1+e^{x}\right)+C=x-\ln \left(1+e^{x}\right)+C
\end{gathered}
$$

(We used the fact that e^{x} and $1+e^{x}$ are both always positive.)
Check: The derivative of the proposed answer is:

$$
1-\frac{e^{x}}{1+e^{x}}=\frac{1}{1+e^{x}}
$$

