PRINT Your Name:

Quiz 5 - September 16, 2011 - Section 7 - 10:10-11:00

Remove everything from your desk except a pencil or pen.

Circle your answer. Show your work. Your work should be correct and coherent. CHECK your answer.
The quiz is worth 5 points.
Find $\int \arctan \sqrt{x} d x$.
Answer: Let $w=\sqrt{x}$. It follows that $d w=\frac{1}{2 \sqrt{x}} d x$. In other words, $2 w d w=d x$. The original integral is $2 \int w \arctan w d w$. We use integration by parts. Let $u=$ $\arctan w$ and $d v=w$. We compute $d u=\frac{d w}{1+w^{2}}$ and $v=\frac{w^{2}}{2}$. The original integral is:

$$
\begin{gathered}
2\left[\frac{w^{2}}{2} \arctan w-\int \frac{w^{2}}{2} \frac{d w}{1+w^{2}}\right]=w^{2} \arctan w-\int \frac{w^{2}}{1+w^{2}} d w \\
=w^{2} \arctan w-\int\left[1-\frac{1}{1+w^{2}}\right] d w=w^{2} \arctan w-w+\arctan w+C \\
=(x+1) \arctan \sqrt{x}-\sqrt{x}+C .
\end{gathered}
$$

Check: The derivative of the proposed answer is:

$$
(x+1) \frac{1}{2 \sqrt{x}(1+x)}+\arctan \sqrt{x}-\frac{1}{2 \sqrt{x}}=\arctan \sqrt{x}
$$

