PRINT Your Name:

Quiz 4 - September 15, 2010 - Section 10 - 11:15-12:05

Remove everything from your desk except this page and a pencil or pen.

Circle your answer. Show your work. Check your answer.

The quiz is worth 5 points.
Find $\int \frac{1}{(x+5)^{2}(x-1)} d x$.
Answer: Use the technique of partial fractions. Set

$$
\frac{1}{(x+5)^{2}(x-1)}=\frac{A}{x+5}+\frac{B}{(x+5)^{2}}+\frac{C}{x-1} .
$$

multiply both sides by $(x+5)^{2}(x-1)$ to obtain

$$
\begin{gathered}
1=A(x+5)(x-1)+B(x-1)+C(x+5)^{2}=A\left(x^{2}+4 x-5\right)+B x-B+C\left(x^{2}+10 x+25\right) \\
=(A+C) x^{2}+(4 A+B+10 C) x+(-5 A-B+25 C) .
\end{gathered}
$$

Equate the corresponding coefficients:

$$
0=A+C, \quad 0=4 A+B+10 C, \quad 1=-5 A-B+25 C .
$$

So, $C=-A, 6 A=-4 A+10 A=-4 A-10 C=B, 1=-5 A-6 A-25 A$. We see that $1=-36 A$; that is $A=\frac{-1}{36}, B=\frac{-6}{36}$, and $C=\frac{1}{36}$. We check this much. We have

$$
\begin{aligned}
\frac{1}{36}\left[\frac{-1}{x+5}+\right. & \left.\frac{-6}{(x+5)^{2}}+\frac{1}{x-1}\right]=\frac{1}{36}\left[\frac{-(x+5)(x-1)-6(x-1)+(x+5)^{2}}{(x+5)^{2}(x-1)}\right] \\
& =\frac{1}{36}\left[\frac{-\left(x^{2}+4 x-5\right)-6(x-1)+\left(x^{2}+10 x+25\right)}{(x+5)^{2}(x-1)}\right] \\
& =\frac{1}{36}\left[\frac{-(-5)-6(-1)+(+25)}{(x+5)^{2}(x-1)}\right]=\frac{1}{(x+5)^{2}(x-1)}
\end{aligned}
$$

as expected. Now, we integrate

$$
\begin{gathered}
\int \frac{1}{(x+5)^{2}(x-1)} d x=\frac{1}{36} \int\left[\frac{-1}{x+5}+\frac{-6}{(x+5)^{2}}+\frac{1}{x-1}\right] d x \\
=\frac{1}{36}\left[-\ln |x+5|+\frac{6}{(x+5)}+\ln |x-1|\right]+C
\end{gathered}
$$

