PRINT Your Name:
Quiz 3 - February 2, 2011 - Section 4 -9:05-9:55 recitation.
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work. Check your answer.
The quiz is worth 5 points.
Find $\int \sin ^{3} x \cos ^{2} x d x$. Check your answer.
There is an odd power of $\sin x$; so, we save one $\sin x$ and convert everything else to $\cos x$. The integral is

$$
\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x
$$

Let $u=\cos x$. It follows that $d u=\sin x d x$. This integral is

$$
\begin{aligned}
&-\int\left(1-u^{2}\right) u^{2} d u=-\int\left(u^{2}-u^{4}\right) d u=-\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)+C \\
&=-\left(\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}\right)+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
-\left(\cos ^{2} x(-\sin x)-\cos ^{4} x(-\sin x)\right)=-\cos ^{2} x(-\sin x)\left(1-\cos ^{2} x\right) \\
=\cos ^{2} x(\sin x) \sin ^{2} x .
\end{gathered}
$$

