PRINT Your Name:

Quiz 3 - February 2, 2011 - Section 3 - 8:00-8:50 recitation.
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work. Check your answer.
The quiz is worth 5 points.
Find $\int(\ln x)^{2} d x$. Check your answer.
Try integration by parts: $\int u d v=u v-\int v d u$. Let $u=(\ln x)^{2}$ and $d v=d x$. It follows that $d u=2 \ln x\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2 \int \ln x d x
$$

Use integration by parts again. Let $u=\ln x$ and $d v=d x$. It follows that $d u=$ $\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2\left(x \ln x-\int d x\right)=x(\ln x)^{2}-2(x \ln x-x)+C .
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
x 2 \ln x\left(\frac{1}{x}\right)+(\ln x)^{2}-2\left(x\left(\frac{1}{x}\right)\right. & +\ln x-1)=2 \ln x+(\ln x)^{2}-2(1+\ln x-1) \\
& =(\ln x)^{2} . \checkmark
\end{aligned}
$$

