PRINT Your Name:
Quiz 3 - September 8, 2010 - Section 10 - 11:15-12:05
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work. Check your answer.
The quiz is worth 5 points.
Find $\int \sqrt{x^{2}+2 x} d x$.
Answer: We complete the square: $x^{2}+2 x=\left(x^{2}+2 x+1\right)-1=(x+1)^{2}-1$. Let $x+1=\sec \theta$. It follows that $(x+1)^{2}-1=\tan ^{2} \theta$ and $d x=\sec \theta \tan \theta d \theta$. The original problem is equal to

$$
\int \tan ^{2} \theta \sec \theta d \theta
$$

We use integration by parts. Let $u=\tan \theta$ and $d v=\sec \theta \tan \theta d \theta$. It follows that $d u=\sec ^{2} \theta d \theta$ and $v=\sec \theta$. So

$$
\begin{aligned}
\int \tan ^{2} \theta \sec \theta d \theta & =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta=\sec \theta \tan \theta-\int\left(\tan ^{2} \theta+1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta d \theta-\int \tan ^{2} \theta \sec \theta d \theta
\end{aligned}
$$

Add $\int \tan ^{2} \theta \sec \theta d \theta$ to both sides to see that

$$
2 \int \tan ^{2} \theta \sec \theta d \theta=\sec \theta \tan \theta-\int \sec \theta d \theta
$$

So

$$
\begin{gathered}
\int \sqrt{x^{2}+2 x} d x=\int \tan ^{2} \theta \sec \theta d \theta=(1 / 2)\left[\sec \theta \tan \theta-\int \sec \theta d \theta\right] \\
=(1 / 2)[\sec \theta \tan \theta-\ln |\sec \theta+\tan \theta|]+C \\
=(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left|(x+1)+\sqrt{x^{2}+2 x}\right|\right]+C .
\end{gathered}
$$

Check. The derivative of

$$
\begin{gathered}
(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left[(x+1)+\sqrt{x^{2}+2 x}\right]\right. \\
1
\end{gathered}
$$

is

$$
\begin{gathered}
(1 / 2)\left[\frac{(x+1)(2 x+2)}{2 \sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{2 x+2}{2 \sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{x+1}{\sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{\sqrt{x^{2}+2 x}+x+1}{\left[(x+1)+\sqrt{x^{2}+2 x}\right] \sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1}{\sqrt{x^{2}+2 x}}\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[(x+1)^{2}+x^{2}+2 x-1\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[2 x^{2}+4 x\right] \\
=\frac{1}{\sqrt{x^{2}+2 x}}\left[x^{2}+2 x\right]=\sqrt{x^{2}+2 x} .
\end{gathered}
$$

