PRINT Your Name:

Remove everything from your desk except a pencil or pen.

Circle your answer. **Show your work.** Your work should be correct and coherent. **CHECK** your answer.

The quiz is worth 5 points.

Find $\int \sqrt{x^2 + 2x} dx$.

Answer: We complete the square: $x^2 + 2x = (x^2 + 2x + 1) - 1 = (x + 1)^2 - 1$. Let $x + 1 = \sec \theta$. It follows that $(x + 1)^2 - 1 = \tan^2 \theta$ and $dx = \sec \theta \tan \theta d\theta$. The original problem is equal to

$$\int \tan^2 \theta \sec \theta d\theta.$$

We use integration by parts. Let $u = \tan \theta$ and $dv = \sec \theta \tan \theta d\theta$. It follows that $du = \sec^2 \theta d\theta$ and $v = \sec \theta$. So

$$\int \tan^2 \theta \sec \theta d\theta = \sec \theta \tan \theta - \int \sec^3 \theta d\theta = \sec \theta \tan \theta - \int (\tan^2 \theta + 1) \sec \theta d\theta$$
$$= \sec \theta \tan \theta - \int \sec \theta d\theta - \int \tan^2 \theta \sec \theta d\theta.$$

Add $\int \tan^2 \theta \sec \theta d\theta$ to both sides to see that

$$2\int \tan^2\theta \sec\theta d\theta = \sec\theta \tan\theta - \int \sec\theta d\theta.$$

So

$$\int \sqrt{x^2 + 2x} dx = \int \tan^2 \theta \sec \theta d\theta = (1/2) \left[\sec \theta \tan \theta - \int \sec \theta d\theta \right]$$
$$= (1/2) \left[\sec \theta \tan \theta - \ln |\sec \theta + \tan \theta| \right] + C$$
$$= \left[(1/2) \left[(x+1)\sqrt{x^2 + 2x} - \ln |(x+1) + \sqrt{x^2 + 2x}| \right] + C \right].$$

Check. The derivative of

$$(1/2)\left[(x+1)\sqrt{x^2+2x} - \ln[(x+1) + \sqrt{x^2+2x}]\right]$$

$$(1/2) \left[\frac{(x+1)(2x+2)}{2\sqrt{x^2+2x}} + \sqrt{x^2+2x} - \frac{1 + \frac{2x+2}{2\sqrt{x^2+2x}}}{(x+1) + \sqrt{x^2+2x}} \right]$$

$$= (1/2) \left[\frac{(x+1)^2}{\sqrt{x^2+2x}} + \sqrt{x^2+2x} - \frac{1 + \frac{x+1}{\sqrt{x^2+2x}}}{(x+1) + \sqrt{x^2+2x}} \right]$$

$$= (1/2) \left[\frac{(x+1)^2}{\sqrt{x^2+2x}} + \sqrt{x^2+2x} - \frac{\sqrt{x^2+2x} + x + 1}{[(x+1) + \sqrt{x^2+2x}]\sqrt{x^2+2x}} \right]$$

$$= (1/2) \left[\frac{(x+1)^2}{\sqrt{x^2+2x}} + \sqrt{x^2+2x} - \frac{1}{\sqrt{x^2+2x}} \right]$$

$$= \frac{1}{2\sqrt{x^2+2x}} \left[(x+1)^2 + x^2 + 2x - 1 \right]$$

$$= \frac{1}{2\sqrt{x^2+2x}} \left[2x^2 + 4x \right]$$

$$= \frac{1}{\sqrt{x^2+2x}} \left[x^2 + 2x \right] = \sqrt{x^2+2x}. \checkmark$$