PRINT Your Name:

Quiz 3 - January 31, 2014 - Section 8 - 10:50-11:40

Remove everything from your desk except this page and a pencil or pen.

The solution will be posted soon after the quiz is given.
Circle your answer. Show your work. Your work must be correct and coherent.
The quiz is worth 5 points.
Find $\int \sqrt{5+4 x-x^{2}} d x$.
Answer: Complete the square $5+4 x-x^{2}=5+4-\left(x^{2}-4 x+4\right)=9-(x-2)^{2}$. We let $x-2=3 \sin \theta$. It follows that $d x=3 \cos \theta d \theta$ and $9-(x-2)^{2}=9-9 \sin ^{2} \theta=$ $9 \cos ^{2} \theta$. The original problem is

$$
\begin{aligned}
& \int \sqrt{5+4 x-x^{2}} d x=\int \sqrt{9-(x-2)^{2}} d x=9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta \\
&=\frac{9}{2}(\theta+(1 / 2) \sin 2 \theta)+C=\frac{9}{2}(\theta+\sin \theta \cos \theta)+C \\
&=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{9-(x-2)^{2}}}{3}\right)+C \\
&=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{5+4 x-x^{2}}}{3}\right)+C \\
&=\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{5+4 x-x^{2}}+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\quad \frac{9}{2} \frac{1 / 3}{\sqrt{1-\left(\frac{x-2}{3}\right)^{2}}}+(1 / 2)\left[(x-2) \frac{4-2 x}{2 \sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{9}{2} \frac{1 / 3}{\frac{1}{3} \sqrt{9-(x-2)^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{9}{2} \frac{1}{\sqrt{5+4 x-x^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[9-(x-2)^{2}+5+4 x-x^{2}\right] \\
=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[2\left(5+4 x-x^{2}\right)\right]=\sqrt{5+4 x-x^{2}} .
\end{gathered}
$$

