PRINT Your Name:

Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Circle your answer. Show your work. Your work must be correct and coherent. Check your answer.

The quiz is worth 5 points.

Find $\int \frac{10}{(x-1)(x^2+9)} dx$.

Answer: We apply the technique of partial fractions. We must find constants A, B, C so that

$$\frac{10}{(x-1)(x^2+9)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+9}$$

Multiply both sides by $(x-1)(x^2+9)$. We must solve

$$10 = A(x^{2} + 9) + (Bx + C)(x - 1)$$

$$10 = \begin{cases} Ax^{2} & +A9 \\ +Bx^{2} & -Bx \\ & +Cx & -C \end{cases}$$

We must find constants A, B, C so that

$$10 = (A+B)x^{2} + (C-B)x + (9A-C).$$

Equate the corresponding coefficients:

$$0 = A + B$$

$$0 = C - B$$

$$10 = 9A - C$$

The top equation gives B = -A. The middle equation gives C = B; so C = -A. The bottom equation gives 10 = 9A - C and this is 10 = 10A. We conclude that A = 1, B = -1, and C = -1. Thus, we have shown that

$$\frac{10}{(x-1)(x^2+9)} = \frac{1}{(x-1)^2} + \frac{-(x-1)^2}{(x^2+9)^2}.$$

By the way, this is correct. The right hand side is

$$\frac{(x^2+9)+(x-1)(-x-1)}{(x-1)(x^2-9)} = \frac{(x^2+9)-x^2-x+x+1}{(x-1)(x^2-9)} = \frac{10}{(x-1)(x^2+9)}$$

We now have

$$\int \frac{10}{(x-1)(x^2+9)} dx = \frac{1}{x-1} + \frac{-x-1}{x^2+9}$$
$$= \boxed{\ln|x-1| - \frac{1}{2}\ln(x^2+9) - \frac{1}{3}\arctan\frac{x}{3} + C}.$$