PRINT Your Name:

Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Circle your answer. Show your work. Your work must be correct and coherent. Check your answer.

Find $\int e^{5x} \sin x dx$. Check your answer.

Use integration by parts. Let $u = e^{5x}$ and $dv = \sin x dx$. Compute $du = 5e^{5x} dx$ and $v = -\cos x$. We have

$$\int e^{5x} \sin x dx = -e^{5x} \cos x + 5 \int e^{5x} \cos x dx.$$

Use intgration by parts again. Let $u = e^{5x}$ and $dv = \cos x dx$. Compute $du = 5e^{5x} dx$ and $v = \sin x$. We have

$$\int e^{5x} \sin x dx = -e^{5x} \cos x + 5 \left[e^{5x} \sin x - 5 \int e^{5x} \sin x dx \right].$$

Add $25 \int e^{5x} \sin x dx$ to both sides to see that

$$26\int e^{5x}\sin x \, dx = -e^{5x}\cos x + 5e^{5x}\sin x + C.$$

Divide both sides by 26 to conclude that

$$\int e^{5x} \sin x dx = \frac{1}{26} [-e^{5x} \cos x + 5e^{5x} \sin x] + K,$$

where K is the constant $\frac{C}{26}$.

CHECK: The derivative of the proposed answer is

$$\frac{1}{26} \begin{bmatrix} e^{5x} \sin x - 5e^{5x} \cos x \\ +25e^{5x} \sin x + 5e^{5x} \cos x \end{bmatrix} = e^{5x} \sin x \checkmark.$$