## PRINT Your Name:

Quiz 28 - November 19, 2015
Approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ with an error at most $5 \times 10^{-5}$. Justify your answer.
We apply the alternating series test. We see that the series is alternating;
$\frac{1}{n^{5}}>\frac{1}{(n+1)^{5}}$ (so the terms in absolute value are decreasing), and $\lim _{n \rightarrow \infty} \frac{1}{n^{5}}=0$ (so the terms go to zero). The alternating series test applies and

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}-\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n^{5}}\right| \leq \frac{1}{(N+1)^{5}}
$$

We want the error to be less than or equal to $5 \times 10^{-5}$; so we make $N$ large enough so that $\frac{1}{(N+1)^{5}} \leq 5 \times 10^{-5}$. We make $10^{5} \leq 5(N+1)^{5}$. This inequality certainly happens when $N=9$. We conclude that

$$
\sum_{n=1}^{9} \frac{(-1)^{n+1}}{n^{5}} \text { approximates } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}} \text { with an error at most } 5 \times 10^{-5} .
$$

