PRINT Your Name:

Quiz 27 - November 18, 2015

Does $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}$ converge? Justify your answer.
We apply the Limit Comparison Test to the given series and $\sum_{n=1}^{\infty} e^{-n}$. Both series are series of positive numbers. We know that $\sum_{n=1}^{\infty} e^{-n}$ is the geometric series with initial term $\frac{1}{e}$ and ratio $\frac{1}{e}$. The number $\frac{1}{e}$ satisfies $-1<\frac{1}{e}<1$; so $\sum_{n=1}^{\infty} e^{-n}$ converges. We compute

$$
\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2} e^{-n}}{e^{-n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}=1
$$

Of course, 1 is a nonzero number; so the Limit Comparison Test ensures that $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}$ and $\sum_{n=1}^{\infty} e^{-n}$ both converge or both diverge. We saw that $\sum_{n=1}^{\infty} e^{-n}$ $\stackrel{n=1}{n=1}$ converges; so

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n} \text { also converges. }
$$

