PRINT Your Name:_____ Quiz 27 — November 18, 2015

Does $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^2 e^{-n}$ converge? Justify your answer.

We apply the Limit Comparison Test to the given series and $\sum_{n=1}^{\infty} e^{-n}$. Both series are series of positive numbers. We know that $\sum_{n=1}^{\infty} e^{-n}$ is the geometric series with initial term $\frac{1}{e}$ and ratio $\frac{1}{e}$. The number $\frac{1}{e}$ satisfies $-1 < \frac{1}{e} < 1$; so $\sum_{n=1}^{\infty} e^{-n}$ converges. We compute

$$\lim_{n \to \infty} \frac{(1+\frac{1}{n})^2 e^{-n}}{e^{-n}} = \lim_{n \to \infty} (1+\frac{1}{n})^2 = 1.$$

Of course, 1 is a nonzero number; so the Limit Comparison Test ensures that $\sum_{\substack{n=1\\\text{converges; so}}}^{\infty} (1+\frac{1}{n})^2 e^{-n}$ and $\sum_{n=1}^{\infty} e^{-n}$ both converge or both diverge. We saw that $\sum_{n=1}^{\infty} e^{-n}$

$$\sum_{n=1}^{\infty} (1 + \frac{1}{n})^2 e^{-n}$$
 also converges.