PRINT Your Name:

Quiz 24 - November 11, 2015
Does $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converge? Justify your answer.
We apply the integral test to the function $f(x)=\frac{1}{x \ln x}$. We see that $0<f(x)$ for $2 \leq x$. We also see that $f^{\prime}(x)=-\frac{x \frac{1}{x}+\ln x}{(x \ln x)^{2}}<0$ for $2 \leq x$. So $f(x)$ is a positive decreasing function for $2 \leq x$. Thus $\int_{2}^{\infty} \frac{1}{x \ln x} d x$ and $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ both converge or both diverge.

We compute

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\left.\lim _{b \rightarrow \infty} \ln (\ln x)\right|_{2} ^{b}=\lim _{b \rightarrow \infty} \ln (\ln b)-\ln (\ln 2)=\infty
$$

The integral diverges; so

$$
\text { The series } \sum_{n=2}^{\infty} \frac{1}{n \ln n} \text { also diverges. }
$$

