PRINT Your Name:

Quiz 20 - October 27, 2015

Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=n \sin \frac{3}{n}$.
We compute

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n \sin \frac{3}{n}=\lim _{n \rightarrow \infty} \frac{\sin \frac{3}{n}}{\frac{1}{n}} .
$$

The top and the bottom both go to zero; so we may apply L'Hopital's rule to conclude that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{-3}{n^{2}} \cos \frac{3}{n}}{\frac{-1}{n^{2}}}=\lim _{n \rightarrow \infty} 3 \cos \frac{3}{n}=3 .
$$

The sequence whose $n^{\text {th }}$ term is $a_{n}=n \sin \frac{3}{n}$ converges to 3 .

