## PRINT Your Name:

Quiz 2 - September 5, $2012-$ Section 9 - 10:10-11:00
Remove everything from your desk except this page and a pencil or pen. The solution will be posted soon after the quiz is given.

Circle your answer. Show your work. Check your answer. The quiz is worth 5 points.
Find $\int \frac{\cos x+\sin 2 x}{\sin x} d x$.
Answer: Use the identity $\sin (\theta+\varphi)=\sin \theta \cos \varphi+\cos \theta \sin \varphi$ to see that the integral is equal to

$$
\int\left(\frac{\cos x}{\sin x}+\frac{2 \sin x \cos x}{\sin x}\right) d x \int\left(\frac{\cos x}{\sin x}+2 \cos x\right) d x .
$$

In the first summand, substitute $u=\sin x$, if necessary. At any rate, the integral is

$$
\ln |\sin x|+2 \sin x+C
$$

Check: The derivative of the proposed answer is

$$
\frac{\cos x}{\sin x}+2 \cos x=\frac{\cos x+2 \cos x \sin x}{\sin x}=\frac{\cos x+\sin 2 x}{\sin x}
$$

