PRINT Your Name:

Quiz 2 - August 26, 2011 - Section 7 - 10:10-11:00
Remove everything from your desk except a pencil or pen.
Circle your answer. Show your work. Your work should be correct and coherent. CHECK your answer.
The quiz is worth 5 points.
Find $\int \sin ^{3} x \cos ^{2} x d x$.
Answer: Save one $\sin x$. Convert the remaining $\sin ^{2} x$ into cosines using $\sin ^{2} x+\cos ^{2} x=1$. The original problem is equal to $\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x$. Let $u=\cos x$. It follows that $d u=-\sin x d x$. The original problem is equal to

$$
\begin{aligned}
-\int\left(1-u^{2}\right) u^{2} d u & =-\int\left(u^{2}-u^{4}\right) d u=-\left(u^{3} / 3-u^{5} / 5\right)+C \\
= & -\left(\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}\right)+C .
\end{aligned}
$$

Check: The derivative of the proposed answer is

$$
-\left(\cos ^{2} x(-\sin x)-\cos ^{4} x(-\sin x)\right)=\cos ^{2} x \sin x\left(1-\cos ^{2} x\right)=\cos ^{2} x \sin ^{3} x \checkmark
$$

